884 resultados para data structures
Resumo:
We generalize the classical notion of Vapnik–Chernovenkis (VC) dimension to ordinal VC-dimension, in the context of logical learning paradigms. Logical learning paradigms encompass the numerical learning paradigms commonly studied in Inductive Inference. A logical learning paradigm is defined as a set W of structures over some vocabulary, and a set D of first-order formulas that represent data. The sets of models of ϕ in W, where ϕ varies over D, generate a natural topology W over W. We show that if D is closed under boolean operators, then the notion of ordinal VC-dimension offers a perfect characterization for the problem of predicting the truth of the members of D in a member of W, with an ordinal bound on the number of mistakes. This shows that the notion of VC-dimension has a natural interpretation in Inductive Inference, when cast into a logical setting. We also study the relationships between predictive complexity, selective complexity—a variation on predictive complexity—and mind change complexity. The assumptions that D is closed under boolean operators and that W is compact often play a crucial role to establish connections between these concepts. We then consider a computable setting with effective versions of the complexity measures, and show that the equivalence between ordinal VC-dimension and predictive complexity fails. More precisely, we prove that the effective ordinal VC-dimension of a paradigm can be defined when all other effective notions of complexity are undefined. On a better note, when W is compact, all effective notions of complexity are defined, though they are not related as in the noncomputable version of the framework.
Resumo:
Recent data indicate that levels of overweight and obesity are increasing at an alarming rate throughout the world. At a population level (and commonly to assess individual health risk), the prevalence of overweight and obesity is calculated using cut-offs of the Body Mass Index (BMI) derived from height and weight. Similarly, the BMI is also used to classify individuals and to provide a notional indication of potential health risk. It is likely that epidemiologic surveys that are reliant on BMI as a measure of adiposity will overestimate the number of individuals in the overweight (and slightly obese) categories. This tendency to misclassify individuals may be more pronounced in athletic populations or groups in which the proportion of more active individuals is higher. This differential is most pronounced in sports where it is advantageous to have a high BMI (but not necessarily high fatness). To illustrate this point we calculated the BMIs of international professional rugby players from the four teams involved in the semi-finals of the 2003 Rugby Union World Cup. According to the World Health Organisation (WHO) cut-offs for BMI, approximately 65% of the players were classified as overweight and approximately 25% as obese. These findings demonstrate that a high BMI is commonplace (and a potentially desirable attribute for sport performance) in professional rugby players. An unanswered question is what proportion of the wider population, classified as overweight (or obese) according to the BMI, is misclassified according to both fatness and health risk? It is evident that being overweight should not be an obstacle to a physically active lifestyle. Similarly, a reliance on BMI alone may misclassify a number of individuals who might otherwise have been automatically considered fat and/or unfit.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.