976 resultados para damage detection
Resumo:
This work investigates the feasibly in using a low noise “C” Band block down-converter as a Ultra High Frequency window coupler for the detection of partial discharge activity from free conducting practices and a protrusion on the high voltage conductor in Gas Insulated Switchgear. The investigated window coupler has a better sensitivity than the internal Ultra High Frequency couplers fitted to the system. The investigated window couplers however are sensitive to changes in the frequency content of the discharge signals and appear to be less sensitive to negative discharges signals produced by a protrusion than the positive discharge signals.
Resumo:
This paper presents preliminary results of an investigation into the detection of partial discharges on the rise of impulse voltages from a point-to-plane gap in SF6. A parallel RC detection impedance is placed in the earth path of a point. Computer simulations are done to determine the values of R and C that will result in the smallest impulse voltage signal and the largest discharge signal across the detection impedance. These simulations and the experimental work show that the impulse voltage signal can not be sufficiently attenuated during the rise time of the applied voltage impulse using the RC detection impedance alone. An alternative discharge detection method is proposed in which a resonant partial discharge coupler is used. Elimination of noise and the impulse voltage signal can be achieved by shorting the coupler plate to the ground plane in the middle of the disk. However, due to the bandwidth of the measuring equipment and noise from the impulse generator it was not possible to detect discharges on the rising edge of a 1.5s voltage impulse using a coupler shorted in the middle. It was found that for this particular coupler, with no shorting points, and if the rising edge of the voltage impulse is longer than 5us, (10us) PD activity can be detected on the rising edge.
Resumo:
Even though crashes between trains and road users are rare events at railway level crossings, they are one of the major safety concerns for the Australian railway industry. Nearmiss events at level crossings occur more frequently, and can provide more information about factors leading to level crossing incidents. In this paper we introduce a video analytic approach for automatically detecting and localizing vehicles from cameras mounted on trains for detecting near-miss events. To detect and localize vehicles at level crossings we extract patches from an image and classify each patch for detecting vehicles. We developed a region proposals algorithm for generating patches, and we use a Convolutional Neural Network (CNN) for classifying each patch. To localize vehicles in images we combine the patches that are classified as vehicles according to their CNN scores and positions. We compared our system with the Deformable Part Models (DPM) and Regions with CNN features (R-CNN) object detectors. Experimental results on a railway dataset show that the recall rate of our proposed system is 29% higher than what can be achieved with DPM or R-CNN detectors.
Resumo:
Patients with rheumatoid arthritis (RA) have a significantly higher risk of coronary heart disease, despite being less likely to report symptoms of angina, and are more likely to experience unrecognised myocardial infarction and sudden cardiac death than non-RA controls.1 Furthermore, left ventricular diastolic dysfunction has been described in up to 40% of patients with RA.2...
Resumo:
Introduction: The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptor molecules. High concentrations of three of its putative proinflammatory ligands, S100A8/A9 complex (calprotectin), S100A8, and S100A12, are found in rheumatoid arthritis (RA) serum and synovial fluid. In contrast, soluble RAGE (sRAGE) may prevent proinflammatory effects by acting as a decoy. This study evaluated the serum levels of S100A9, S100A8, S100A12 and sRAGE in RA patients, to determine their relationship to inflammation and joint and vascular damage. Methods: Serum sRAGE, S100A9, S100A8 and S100A12 levels from 138 patients with established RA and 44 healthy controls were measured by ELISA and compared by unpaired t test. In RA patients, associations with disease activity and severity variables were analyzed by simple and multiple linear regressions. Results: Serum S100A9, S100A8 and S100A12 levels were correlated in RA patients. S100A9 levels were associated with body mass index (BMI), and with serum levels of S100A8 and S100A12. S100A8 levels were associated with serum levels of S100A9, presence of anti-citrullinated peptide antibodies (ACPA), and rheumatoid factor (RF). S100A12 levels were associated with presence of ACPA, history of diabetes, and serum S100A9 levels. sRAGE levels were negatively associated with serum levels of C-reactive protein (CRP) and high-density lipoprotein (HDL), history of vasculitis, and the presence of the RAGE 82Ser polymorphism. Conclusions: sRAGE and S100 proteins were associated not just with RA inflammation and autoantibody production, but also with classical vascular risk factors for end-organ damage. Consistent with its role as a RAGE decoy molecule, sRAGE had the opposite effects to S100 proteins in that S100 proteins were associated with autoantibodies and vascular risk, whereas sRAGE was associated with protection against joint and vascular damage. These data suggest that RAGE activity influences co-development of joint and vascular disease in rheumatoid arthritis patients.
Resumo:
There have been recent improvements in the clinical understanding and definition of the major types of autoimmune liver disease. However, still lacking is knowledge of their prevalence and pathogenesis. Three areas of study are in progress in our laboratory. First, in type 1 autoimmune hepatitis, the search continues to identify a liver/disease-specific autoantigenic reactant. Using hepatocyte membrane preparations, immunoblotting has underlined the problem of distinguishing, among multiple reactants, those that may be causally rather than consequentially related to hepatocellular damage. Second, in primary biliary cirrhosis (PBC), the need for population screening to ascertain prevalence and detect preclinical cases can be met by a rapid automated procedure for detection, by specific enzyme inhibition in microtitre wells, of antibody (anti-M2) to the pyruvate dehydrogenase complex E2 subunit (PDC-E2). Third, the structure of the conformational epitope within the inner lipoyl domain of PDC-E2 is being investigated by screening random phage-displayed peptide libraries using PBC sera. This has yielded phage clones in which the sequence of the peptide insert portrays the structure of this epitope, as judged by clustering of PBC-derived sequences to particular branches of a guide-tree that shows relatedness of peptides, and by reactivity of selected phage clones with anti-PDC-E2. Thus phage display identifies a peptide 'mimotope' of the antibody epitope in the inner lipoyl domain of PDC-E2.
Resumo:
Background Genetic testing is recommended when the probability of a disease-associated germline mutation exceeds 10%. Germline mutations are found in approximately 25% of individuals with phaeochromcytoma (PCC) or paraganglioma (PGL); however, genetic heterogeneity for PCC/PGL means many genes may require sequencing. A phenotype-directed iterative approach may limit costs but may also delay diagnosis, and will not detect mutations in genes not previously associated with PCC/PGL. Objective To assess whether whole exome sequencing (WES) was efficient and sensitive for mutation detection in PCC/PGL. Methods Whole exome sequencing was performed on blinded samples from eleven individuals with PCC/PGL and known mutations. Illumina TruSeq™ (Illumina Inc, San Diego, CA, USA) was used for exome capture of seven samples, and NimbleGen SeqCap EZ v3.0 (Roche NimbleGen Inc, Basel, Switzerland) for five samples (one sample was repeated). Massive parallel sequencing was performed on multiplexed samples. Sequencing data were called using Genome Analysis Toolkit and annotated using annovar. Data were assessed for coding variants in RET, NF1, VHL, SDHD, SDHB, SDHC, SDHA, SDHAF2, KIF1B, TMEM127, EGLN1 and MAX. Target capture of five exome capture platforms was compared. Results Six of seven mutations were detected using Illumina TruSeq™ exome capture. All five mutations were detected using NimbleGen SeqCap EZ v3.0 platform, including the mutation missed using Illumina TruSeq™ capture. Target capture for exons in known PCC/PGL genes differs substantially between platforms. Exome sequencing was inexpensive (<$A800 per sample for reagents) and rapid (results <5 weeks from sample reception). Conclusion Whole exome sequencing is sensitive, rapid and efficient for detection of PCC/PGL germline mutations. However, capture platform selection is critical to maximize sensitivity.
Resumo:
Stochastic (or random) processes are inherent to numerous fields of human endeavour including engineering, science, and business and finance. This thesis presents multiple novel methods for quickly detecting and estimating uncertainties in several important classes of stochastic processes. The significance of these novel methods is demonstrated by employing them to detect aircraft manoeuvres in video signals in the important application of autonomous mid-air collision avoidance.
Resumo:
A miniaturized flow-through system consisting of a gold coated silicon substrate based on enhanced Raman spectroscopy has been used to study the detection of vapour from model explosive compounds. The measurements show that the detectability of the vapour molecules at room temperature depends sensitively on the interaction between the molecule and the substrate. The results highlight the capability of a flow system combined with Raman spectroscopy for detecting low vapour pressure compounds with a limit of detection of 0.2 ppb as demonstrated by the detection of bis(2-ethylhexyl)phthalate, a common polymer additive emitted from a commercial polyvinyl chloride (PVC) tubing at room temperature.
Resumo:
Hand, foot and mouth disease (HFMD) is a contagious viral disease that frequently affects infants and children and present with blisters and flu-like symptoms. This disease is caused by a group of enteroviruses such as enterovirus 71 (EV71) and coxsackievirus A16 (CA16). However, unlike other HFMD causing enteroviruses, EV71 have also been shown to be associated with more severe clinical manifestation such as aseptic meningitis, brainstem and cerebellar encephalitis which may lead to cardiopulmonary failure and death. Clinically, HFMD caused by EV71 is indistinguishable from other HFMD causing enteroviruses such as CA16. Molecular diagnosis methods such as the use of real-time PCR has been used commonly for the identification of EV71. In this study, two platforms namely the real-time PCR and the droplet digital PCR were compared for the detection quantitation of known EV71 viral copy number. The results reveal accurate and consistent results between the two platforms. In summary, the droplet digital PCR was demonstrated to be a promising technology for the identification and quantitation of EV71 viral copy number.
Resumo:
A simple and rapid method of analysis for mercury ions (Hg2+) and cysteine (Cys) was developed with the use of graphene quantum dots (GQDs) as a fluorescent probe. In the presence of GQDs, Hg2+ cations are absorbed on their negatively charged surface by means of electrostatic interactions. Thus, the fluorescence (FL) of the GQDs would be significantly quenched as a result of the FL charge transfer, e.g. 92% quenching at 450 nm occurs for a 5 μmol L−1 Hg2+ solution. However, when Cys was added, a significant FL enhancement was observed (510% at 450 nm for a 8.0 μmol L−1 Cys solution), and Hg2+ combined with Cys rather than with the GQDs in an aqueous solution. This occurred because a strong metalsingle bondthiol bond formed, displacing the weak electrostatic interactions, and this resulted in an FL enhancement of the GQDs. The limits of detection (LOD) for Hg2+ and Cys were 0.439 nmol L−1 and 4.5 nmol L−1, respectively. Also, this method was used successfully to analyze Hg2+ and Cys in spiked water samples.
Resumo:
Introduction Presently, the severity of obstructive sleep apnea (OSA) is estimated based on the apnea-hypopnea index (AHI). Unfortunately, AHI does not provide information on the severity of individual obstruction events. Previously, the severity of individual obstruction events has been suggested to be related to the outcome of the disease. In this study, we incorporate this information into AHI and test whether this novel approach would aid in discriminating patients with the highest risk. We hypothesize that the introduced adjusted AHI parameter provides a valuable supplement to AHI in the diagnosis of the severity of OSA. Methods This hypothesis was tested by means of retrospective follow-up (mean ± sd follow-up time 198.2 ± 24.7 months) of 1,068 men originally referred to night polygraphy due to suspected OSA. After exclusion of the 264 patients using CPAP, the remaining 804 patients were divided into normal (AHI < 5) and OSA (AHI ≥ 5) categories based on conventional AHI and adjusted AHI. For a more detailed analysis, the patients were divided into normal, mild, moderate, and severe OSA categories based on conventional AHI and adjusted AHI. Subsequently, the mortality and cardiovascular morbidity in these groups were determined. Results Use of the severity of individual obstruction events for adjustment of AHI led to a significant rearrangement of patients between severity categories. Due to this rearrangement, the number of deceased patients diagnosed to have OSA was increased when adjusted AHI was used as the diagnostic index. Importantly, risk ratios of all-cause mortality and cardiovascular morbidity were higher in moderate and severe OSA groups formed based on the adjusted AHI parameter than in those formed based on conventional AHI. Conclusions The adjusted AHI parameter was found to give valuable supplementary information to AHI and to potentially improve the recognition of OSA patients with the highest risk of mortality or cardiovascular morbidity.
Resumo:
Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress
Resumo:
Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. This study explored spatio-temporal distribution and clustering of locally-acquired dengue cases in Queensland State, Australia and identified target areas for effective interventions. A computerised locally-acquired dengue case dataset was collected from Queensland Health for Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Dengue hot spots were detected using SatScan method. Descriptive spatial analysis showed that a total of 2,398 locally-acquired dengue cases were recorded in central and northern regions of tropical Queensland. A seasonal pattern was observed with most of the cases occurring in autumn. Spatial and temporal variation of dengue cases was observed in the geographic areas affected by dengue over time. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in tropical Queensland, Australia. There is a clear evidence for the existence of statistically significant clusters of dengue and these clusters varied over time. These findings enabled us to detect and target dengue clusters suggesting that the use of geospatial information can assist the health authority in planning dengue control activities and it would allow for better design and implementation of dengue management programs.
Resumo:
Rolling-element bearing failures are the most frequent problems in rotating machinery, which can be catastrophic and cause major downtime. Hence, providing advance failure warning and precise fault detection in such components are pivotal and cost-effective. The vast majority of past research has focused on signal processing and spectral analysis for fault diagnostics in rotating components. In this study, a data mining approach using a machine learning technique called anomaly detection (AD) is presented. This method employs classification techniques to discriminate between defect examples. Two features, kurtosis and Non-Gaussianity Score (NGS), are extracted to develop anomaly detection algorithms. The performance of the developed algorithms was examined through real data from a test to failure bearing. Finally, the application of anomaly detection is compared with one of the popular methods called Support Vector Machine (SVM) to investigate the sensitivity and accuracy of this approach and its ability to detect the anomalies in early stages.