837 resultados para cyclic plastic deformation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When stimulated by a point source of cyclic AMP, a starved amoeba of Dictyostelium discoideum responds by putting out a hollow balloon-like membrane extension followed by a pseudopod. The effect of the stimulus is to influence the position where either of these protrusions is made on the cell rather than to cause them to be made. Because the pseudopod forms perpendicular to the cell surface, its location is a measure of the precision with which the cell can locate the cAMP source. Cells beyond 1 h of starvation respond non-randomly with a precision that improves steadily thereafter. A cell that is starved for 1-2 h can locate the source accurately 43% of the time; and if starved for 6-7 h, 87% of the time. The response always has a high scatter; population-level heterogeneity reflects stochasticity in single cell behaviour. From the angular distribution of the response its maximum information content is estimated to be 2-3 bits. In summary, we quantitatively demonstrate the stochastic nature of the directional response and the increase in its accuracy over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superplastic tensile tests on warm rolled and optimally annealed boron modified alloy Ti-6Al-4V-0.1B at a temperature of 850 degrees C and initial strain rate of 3 x 10(-4) s(-1) results in a higher elongation (similar to 500%) compared to the base alloy Ti-6Al-4V (similar to 400%). The improvement in superplasticity has been attributed to enhanced contribution from interfacial boundary sliding to the overall deformation for the boron modified alloy. The boundary sliding was facilitated by the starting microstructure which predominantly contains small equiaxed primary a grains with narrow size distribution. Dynamic processes such as coarsening and globularization of primary a phase occur under the test condition but do not significantly contribute to the observed difference in superplasticity between the two alloys. In spite of cavitation takes place around the TiB particles during deformation, they do not cause macroscopic cracking and early fracture by virtue of the cavities being extremely localized. Localized cavitation is found to correlate with increased material transfer due to faster diffusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetylation of lysine residues is a posttranslational modification that is used by both eukaryotes and prokaryotes to regulate a variety of biological processes. Here we identify multiple substrates for the cAMP-dependent protein lysine acetyltransferase from Mycobacterium tuberculosis (KATmt). We demonstrate that a catalytically important lysine residue in a number of FadD (fatty acyl CoA synthetase) enzymes is acetylated by KATmt in a cAMP-dependent manner and that acetylation inhibits the activity of FadD enzymes. A sirtuin-like enzyme can deacetylate multiple FadDs, thus completing the regulatory cycle. Using a strain deleted for the KATmt ortholog in Mycobacterium bovis Bacillus Calmette-Guerin (BCG), we show for the first time that acetylation is dependent on intracellular cAMP levels. KATmt can utilize propionyl CoA as a substrate and, therefore, plays a critical role in alleviating propionyl CoA toxicity in mycobacteria by inactivating acyl CoA synthetase (ACS). The precision by which mycobacteria can regulate the metabolism of fatty acids in a cAMP-dependent manner appears to be unparalleled in other biological organisms and is ideally suited to adapt to the complex environment that pathogenic mycobacteria experience in the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intestine is the primary site of nutrient absorption, fluid-ion secretion, and home to trillions of symbiotic microbiota. The high turnover of the intestinal epithelia also renders it susceptible to neoplastic growth. These diverse processes are carefully regulated by an intricate signaling network. Among the myriad molecules involved in intestinal epithelial cell homeostasis are the second messengers, cyclic AMP (cAMP) and cyclic GMP (cGMP). These cyclic nucleotides are synthesized by nucleotidyl cyclases whose activities are regulated by extrinsic and intrinsic cues. Downstream effectors of cAMP and cGMP include protein kinases, cyclic nucleotide gated ion channels, and transcription factors, which modulate key processes such as ion-balance, immune response, and cell proliferation. The web of interaction involving the major signaling pathways of cAMP and cGMP in the intestinal epithelial cell, and possible cross-talk among the pathways, are highlighted in this review. Deregulation of these pathways occurs during infection by pathogens, intestinal inflammation, and cancer. Thus, an appreciation of the importance of cyclic nucleotide signaling in the intestine furthers our understanding of bowel disease, thereby aiding in the development of therapeutic approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Cu-Cu multilayer processed by accumulative roll bonding was deformed to large strains and further annealed. The texture of the deformed Cu-Cu multilayer differs from the conventional fcc rolling textures in terms of higher fractions of Bs and RD-rotated cube components, compared with the volume fraction of Cu component. The elongated grain shape significantly affects the deformation characteristics. Characteristic microstructural features of both continuous dynamic recrystallization and discontinuous dynamic recrystallization were observed in the microtexture measurements. X-ray texture measurements of annealing of heavily deformed multilayer demonstrate constrained recrystallization and resulted in a bimodal grain size distribution in the annealed material at higher strains. The presence of cube- and BR-oriented grains in the deformed material confirms the oriented nucleation as the major influence on texture change during recrystallization. Persistence of cube component throughout the deformation is attributed to dynamic recrystallization. Evolution of RD-rotated cube is attributed to the deformation of cube components that evolve from dynamic recrystallization. The relaxation of strain components leads to Bs at larger strains. Further, the Bs component is found to recover rather than recrystallize during deformation. The presence of predominantly Cu and Bs orientations surrounding the interface layer suggests constrained annealing behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation behaviour of macrocrystalline and nanocrystalline nickel shows a striking similarity in terms of higher intragranular misorientation and a texture with dominant Brass component on rolling. This is in contrast to microcrystalline nickel, with lower intragranular misorientation and typical Copper type texture. This has been attributed to the free surfaces in macrocrystalline sample and grain boundaries in nanocrystalline sample. Experimental evidence of `Grain Boundary Affected Zone' (GBAZ) showing multi-slip in contrast to limited slip in the grain interiors has been provided. The similarity in evolution of texture and intragranular misorientation is explained on the basis of reduced contribution from the GBAZ at the two extreme length scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic Polymer Metal Composites (IPMCs) are a class of Electro-Active Polymers (EAPs) consisting of a base polymer (usually Nafion), sandwiched between thin films of electrodes and an electrolyte. Apart from fuel cell like proton exchange process in Nafion, these IPMCs can act both as an actuator and a sensor. Typically, IPMCs have been known for their applications in fuel cell technology and in artificial muscles for robots. However, more recently, sensing properties of IPMC have opened up possibilities of mechanical energy harvesting. In this paper, we consider a bi-layer stack of IPMC membranes where fluid flow induced cyclic oscillation allows collection of electronic charge across a pair of functionalized electrode on the surface of IPMC layers/stacks. IPMCs work well in hydrated environment; more specifically, in presence of an electrolyte, and therefore, have great potential in underwater applications like hydrodynamic energy harvesting. Hydrodynamic forces produce bending deformation, which can induce transport of cations via polymer chains of the base polymer of Nafion or PTFE. In our experimental set-up, the deformation is induced into the array of IPMC membranes immersed in electrolyte by water waves caused by a plunger connected to a stepper motor. The frequency and amplitude of the water waves is controlled by the stepper motor through a micro-controller. The generated electric power is measured across a resistive load. Few orders of magnitude increase in the harvested power density is observed. Analytical modeling approach used for power and efficiency calculations are discussed. The observed electro-mechanical performance promises a host of underwater energy harvesting applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot deformation of pearlitic steel was carried out to examine the overall deformation response to microstructural evolution. To understand the mechanisms operative during hot deformation, compression tests were carried out at various temperatures in the range 400(-)600 degrees C and strain rates in the range 0.001-10 s(-1). The flow curves were analyzed to examine the occurrence of dynamic recrystallization. The evolution of microstructure in hot deformed samples is analysed using EBSD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the spatio-temporal dynamical features of the Ananthakrishna model for the Portevin-Le Chatelier effect, a kind of plastic instability observed under constant strain rate deformation conditions. We then establish a qualitative correspondence between the spatio-temporal structures that evolve continuously in the instability domain and the nature of the irregularity of the scalar stress signal. Rest of the study is on quantifying the dynamical information contained in the stress signals about the spatio-temporal dynamics of the model. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatio-temporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands. The stress signals in the partially propagating to fully propagating bands turn to have features of extensive chaos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32-34 times that at the liquid limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents classification, representation and extraction of deformation features in sheet-metal parts. The thickness is constant for these shape features and hence these are also referred to as constant thickness features. The deformation feature is represented as a set of faces with a characteristic arrangement among the faces. Deformation of the base-sheet or forming of material creates Bends and Walls with respect to a base-sheet or a reference plane. These are referred to as Basic Deformation Features (BDFs). Compound deformation features having two or more BDFs are defined as characteristic combinations of Bends and Walls and represented as a graph called Basic Deformation Features Graph (BDFG). The graph, therefore, represents a compound deformation feature uniquely. The characteristic arrangement of the faces and type of bends belonging to the feature decide the type and nature of the deformation feature. Algorithms have been developed to extract and identify deformation features from a CAD model of sheet-metal parts. The proposed algorithm does not require folding and unfolding of the part as intermediate steps to recognize deformation features. Representations of typical features are illustrated and results of extracting these deformation features from typical sheet metal parts are presented and discussed. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32–34 times that at the liquid limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure and mechanical properties of nanocrystalline Pd films prepared by magnetron sputtering have been investigated as a function of strain. The films were deposited onto polyimide substrates and tested in tensile mode. In order to follow the deformation processes in the material, several samples were strained to defined straining states, up to a maximum engineering strain of 10%, and prepared for post-mortem analysis. The nanocrystalline structure was investigated by quantitative automated crystal orientation mapping (ACOM) in a transmission electron microscope (TEM), identifying grain growth and twinning/detwinning resulting from dislocation activity as two of the mechanisms contributing to the macroscopic deformation. Depending on the initial twin density, the samples behaved differently. For low initial twin densities, an increasing twin density was found during straining. On the other hand, starting from a higher twin density, the twins were depleted with increasing strain. The findings from ACOM-TEM were confirmed by results from molecular dynamics (MD) simulations and from conventional and in-situ synchrotron X-ray diffraction (CXRD, SXRD) experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic AMP (cAMP) has emerged as a pivotal molecule for signalling in all life forms. Mycobacterial genomes have been found to encode for numerous proteins that are involved in cAMP generation, degradation and utilization. Many of these proteins have domain organizations unique to mycobacteria. This review summarizes recent advances in mechanisms of cAMP synthesis and degradation, focusing on the processes by which cAMP modulates mycobacterial signalling. We explore its impact on the physiology of the organism and on the discourse between M. tuberculosis and its host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of simple functionalization methods to attach biomolecules such as proteins and DNA on inexpensive substrates is important for widespread use of low cost, disposable biosensors. Here, we describe a method based on polyelectrolyte multilayers to attach single stranded DNA molecules to conventional glass slides as well as a completely non-standard substrate, namely flexible plastic transparency sheets. We then use the functionalized transparency sheets to specifically detect single stranded Hepatitis B DNA sequences from samples. We also demonstrate a blocking method for reducing non-specific binding of target DNA sequences using negatively charged polyelectrolyte molecules. The polyelectrolyte based functionalization method, which relies on surface charge as opposed to covalent surface linkages, could be an attractive platform to develop assays on inexpensive substrates for low cost biosensing.