865 resultados para confidence set
Resumo:
The problem of estimating the numbers of motor units N in a muscle is embedded in a general stochastic model using the notion of thinning from point process theory. In the paper a new moment type estimator for the numbers of motor units in a muscle is denned, which is derived using random sums with independently thinned terms. Asymptotic normality of the estimator is shown and its practical value is demonstrated with bootstrap and approximative confidence intervals for a data set from a 31-year-old healthy right-handed, female volunteer. Moreover simulation results are presented and Monte-Carlo based quantiles, means, and variances are calculated for N in{300,600,1000}.
Resumo:
The aim of many genetic studies is to locate the genomic regions (called quantitative trait loci, QTLs) that contribute to variation in a quantitative trait (such as body weight). Confidence intervals for the locations of QTLs are particularly important for the design of further experiments to identify the gene or genes responsible for the effect. Likelihood support intervals are the most widely used method to obtain confidence intervals for QTL location, but the non-parametric bootstrap has also been recommended. Through extensive computer simulation, we show that bootstrap confidence intervals are poorly behaved and so should not be used in this context. The profile likelihood (or LOD curve) for QTL location has a tendency to peak at genetic markers, and so the distribution of the maximum likelihood estimate (MLE) of QTL location has the unusual feature of point masses at genetic markers; this contributes to the poor behavior of the bootstrap. Likelihood support intervals and approximate Bayes credible intervals, on the other hand, are shown to behave appropriately.
Resumo:
Motivation: Gene Set Enrichment Analysis (GSEA) has been developed recently to capture moderate but coordinated changes in the expression of sets of functionally related genes. We propose number of extensions to GSEA, which uses different statistics to describe the association between genes and phenotype of interest. We make use of dimension reduction procedures, such as principle component analysis to identify gene sets containing coordinated genes. We also address the problem of overlapping among gene sets in this paper. Results: We applied our methods to the data come from a clinical trial in acute lymphoblastic leukemia (ALL) [1]. We identified interesting gene sets using different statistics. We find that gender may have effects on the gene expression in addition to the phenotype effects. Investigating overlap among interesting gene sets indicate that overlapping could alter the interpretation of the significant results.