978 resultados para citrus crop
Resumo:
Objectives of this project were to study corn nitrogen (N) fertilization requirement and corn-soybean yield response when grown in a rye cover cropping system. Multiple rates of N fertilizer were applied, with measurement of corn yield response to applied N and soybean yield with and without a fall planted winter rye cover crop. The study was conducted at multiple research farms, with the intent for comparison of with and without a cover crop system across varying soil and climatic conditions in Iowa.
Resumo:
Tillage system and crop rotation have a major long-term effect on soil productivity and soil quality components such as soil carbon and other soil physical, biological, and chemical properties. In addition, both tillage and crop rotation have effects on weed and soil disease control. There is a need for well-defined, longterm tillage and crop rotation studies across the different soils and climate conditions in the state. The objective of this study was to evaluate the long-term effects of different tillage systems and crop rotations on soil productivity.
Resumo:
The 30 × 12 × 96 ft (W × H × L, 2,880 ft 2 ) high tunnel was planted and maintained as part of a high tunnel production budget project funded by a Specialty Crop Grant through the Iowa Department of Agriculture and Land Stewardship. Six growers throughout the state participated in the project with the objectives of creating an enterprise budgeting tool that estimates the costs and revenues associated with producing specific crops in a high tunnel, either as a single crop or multi-crop system. The budgeting tool will estimate the production cost and net profit per square foot in a high tunnel from mono-culture (one crop per tunnel) or multi-cropping, successionplanted systems. This report summarizes the findings from the high tunnel at the ISU Horticulture Research Station. The plantings in this high tunnel were used to collect labor and yield data as well as demonstrate a continuous, multi-cropping production system. A publication containing the enterprise budgeting tool, using this data and data collected from the other six farms, will be available through Iowa State University Extension and Outreach in the fall of 2012.
Resumo:
El objetivo de este trabajo fue evaluar la tolerancia al estrés salino en el portainjerto Citrumelo cultivar 75 AB (Citrus paradisi x Poncirus trifoliata), en comparación con Mandarino Cleopatra (Citrus retuculata), conocido por su elevada tolerancia. Se incubaron plántulas entre toallas de papel, humedecidas con agua destilada o soluciones de NaCl 30 mM. El diseño experimental fue completamente aleatorizado con 3 repeticiones, y los datos se analizaron mediante ANOVA y Test de Tukey. Luego de 41 días de ensayo se determinó el peso fresco, contenido relativo de agua (CRA), concentración de prolina y composición mineral. El crecimiento de Cleopatra fue más sensible a la salinidad que el de Citrumelo cultivar 75 AB. El CRA se mantuvo constante en ambos portainjertos. El ajuste osmótico se realizó mediante la acumulación de prolina en hojas; su concentración fue mayor en Citrumelo 75 AB. Este último excluyó los iones Na+ y Cl- de la parte aérea, restringiéndolos al sistema radicular, mientras que en Cleopatra se observó lo opuesto. Se concluye que Citrumelo cultivar 75 AB es más tolerante a la salinidad que Cleopatra, y excluye los iones Na+ y Cl- de la parte aérea.
Resumo:
Abiotic stress is one of the most common causes of crop deficit and loss and hence an important area of study. Moreover, concerns regarding global climate change over past decades mean the study of different abiotic stresses appears to be essential if its effects are to be mitigated. The current review covers the effects of heat stress on crop performance, the response crops make when subjected to this stress and the development of tools designed to breed for stress tolerant crops. Distinct levels of the problem are considered, from the morphological/anatomical, through the physiological and to the biochemical/molecular. The study of heat shock proteins (HSPs), quantitative trait loci (QTLs) identification and the relationship between metabolomics (OMICS) and heat stress are given special consideration.
Resumo:
El objetivo de este trabajo fue analizar el efecto de diferentes dosis de fertilizantes foliares con macronutrientes en plantas de naranja Valencia y de tangor Murcott. Los experimentos fueron realizados durante tres campañas consecutivas en Corrientes Argentina. El diseño experimental fue en bloques completos al azar con cuatro repeticiones y parcelas experimentales de cuatro plantas. Los tratamientos ensayados fueron T1 control; T2 N (12%) 2 L.ha-1; T3 N (12%) 4 L.ha-1; T4 N (9%) y P (2,6%) 2 L ha- 1; T5 N (9%) y P (2,6%) 4 L.ha-1; T6 N (9,3%), P (2,6%) y K (2,1%) 2 L.ha-1; T7 N (9,3%), P (2,6%) y K (2,1%) 4 L.ha-1, de fertilizante foliar formulados en base a sales de sulfato de amonio, fosfato monoamónico y nitrato de potasio según tratamiento. Los mismos fueron aplicados por campaña en prefloración, plena floración y en otoño. Se midieron las concentraciones foliares de N, P y K en hojas de otoño de ramas fructíferas y al momento de cosecha se determinó rendimiento total, diámetro de fruta, porcentaje de jugo, sólidos solubles, acidez y relación sólidos solubles/acidez. En Valencia late todos los tratamientos incrementaron el contenido de P foliar en comparación con el control. El tratamiento T7 incrementó un 38,7% el rendimiento respecto de T1, aunque los frutos presentaron menor diámetro. En "Murcott" todos los tratamientos incrementaron el rendimiento comparados con T1, y las máximas producciones se observaron en los tratamientos T7 (64,9% mayor) y T6 (43,8% mayor) además T7 incrementó el contenido de P foliar y disminuyó el contenido de sólidos solubles en comparación con el control. La fertilización foliar con macronutrientes incrementó la productividad en naranja Valencia late y tangor Murcott. Este trabajo muestra la utilidad de la fertilización foliar con macronutrientes como una herramienta complementaria en los programas de fertilización diseñados para optimizar el rendimiento.
Resumo:
The global climate is changing rapidly and Arctic regions are showing responses to recent warming. Responses of tundra ecosystems to climate change have been examined primarily through short-term experimental manipulations, with few studies of long-term ambient change. We investigated changes in above- and belowground biomass of wet sedge tundra to the warming climate of the Canadian High Arctic over the past 25 years. Aboveground standing crop was harvested from five sedge meadow sites and belowground biomass was sampled from one of the sites in the early 1980s and in 2005 using the same methods. Aboveground biomass was on average 158% greater in 2005 than in the early 1980s. The belowground biomass was also much greater in 2005: root biomass increased by 67% and rhizome biomass by 139% since the early 1980s. Dominant species from each functional group (graminoids, shrubs and forbs) showed significant increases in aboveground biomass. Responsive species included the dominant sedge species Carex aquatilis stans, C. membranacea, and Eriophorum angustifolium, as well as the dwarf shrub Salix arctica and the forb Polygonum viviparum. However, diversity measures were not different between the sample years. The greater biomass correlated strongly with increased annual and summer temperatures over the same time period, and was significantly greater than the annual variation in biomass measured in 1980-1983. Increased decomposition and mineralization rates, stimulated by warmer soils, were likely a major cause of the elevated productivity, as no differences in the mass of litter were found between sample periods. Our results are corroborated by published short-term experimental studies, conducted in other wet sedge tundra communities which link warming and fertilization with elevated decomposition, mineralization and tundra productivity. We believe that this is the first study to show responses in High Arctic wet sedge tundra to recent climate change.
Resumo:
This study examines the significance of food crop diversification as a household risk mitigating strategy to achieve "self-sufficiency" to ensure food security during the civil conflict in Cote d’Ivoire. The main motivation for seeking self-sufficiency stems from the fact that during the period of heightened tension due to conflict, the north–south divide set by the UN peacekeeping line disrupted the agricultural supply chain from the food surplus zone, Savane in the north. While we theoretically predict a positive effect on crop diversification because of interrupted food supply chain, we also consider a negative effect due to the covariate shocks. We find robust and statistically significant empirical outcomes supporting such claims. The baseline outcomes withstand a series of robustness checks. The net effect of conflict on crop diversification is positive but not statistically significant. In addition, we find that increasing vulnerability to poverty and food insecurity during conflict seems to be the underlying factors that motivate farm households to adopt such coping strategies.
Resumo:
Inoculum sources and Preservation in Soils of Phytophthora parasitica from Cherry Tomato in Continental Crop Areas in Southeast Spain
Resumo:
In order to establish a rational nitrogen (N) fertilisation and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its dynamics inside the plant is crucial. In two successive years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to determine the uptake of N fertiliser, applied by means of fertigation at different stages of plant growth, and to follow the translocation of N in the plant using 15N-labelled N. In 2006, two experiments were carried out. In the first experiment, labelled 15N fertiliser was supplied at the female-bloom stage and in the second, at the end of fruit ripening. Labelled 15N fertiliser was made from 15NH415NO3 (10 at.% 15N) and 9.6 kg N ha−1 were applied in each experiment over 6 days (1.6 kg N ha−1 d−1). In 2007, the 15N treatment consisted of applying 20.4 kg N ha−1 as 15NH415NO3 (10 at.% 15N) in the middle of fruit growth, over 6 days (3.4 kg N ha−1 d−1). In addition, 93 and 95 kg N ha−1 were supplied daily by fertigation as ammonium nitrate in 2006 and 2007, respectively. The results obtained in 2006 suggest that the uptake of N derived from labelled fertiliser by the above-ground parts of the plants was not affected by the time of fertiliser application. At the female-flowering and fruit-ripening stages, the N content derived from 15N-labelled fertiliser was close to 0.435 g m−2 (about 45% of the N applied), while in the middle of fruit growth it was 1.45 g m−2 (71% of the N applied). The N application time affected the amount of N derived from labelled fertiliser that was translocated to the fruits. When the N was supplied later, the N translocation was lower, ranging between 54% at female flowering and 32% at the end of fruit ripening. Approximately 85% of the N translocated came from the leaf when the N was applied at female flowering or in the middle of fruit growth. This value decreased to 72% when the 15N application was at the end of fruit ripening. The ammonium nitrate became available to the plant between 2 and 2.5 weeks after its application. Although the leaf N uptake varied during the crop cycle, the N absorption rate in the whole plant was linear, suggesting that the melon crop could be fertilised with constant daily N amounts until 2–3 weeks before the last harvest.
Resumo:
The evapotranspiration (ETc) of sprinkler-irrigated rice was determined for the semiarid conditions of NE Spain during 2001, 2002 and 2003. The surface renewal method, after calibration against the eddy covariance method, was used to obtain values of sensible heat flux (H) from high-frequency temperature readings. Latent heat flux values were obtained by solving the energy balance equation. Finally, lysimeter measurements were used to validate the evapotranspiration values obtained with the surface renewal method. Seasonal rice evapotranspiration was about 750–800 mm. Average daily ETc for mid-season (from 90 to 130 days after sowing) was 5.1, 4.5 and 6.1 mm day−1 for 2001, 2002 and 2003, respectively. The experimental weekly crop coefficients fluctuated in the range of 0.83–1.20 for 2001, 0.81–1.03 for 2002 and 0.84–1.15 for 2003. The total growing season was about 150–160 days. In average, the crop coefficients for the initial (Kcini), mid-season (Kcmid) and late-season stages (Kcend) were 0.92, 1.06 and 1.03, respectively, the length of these stages being about 55, 45 and 25 days, respectively.
Resumo:
Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm “El Encín” in Alcalá de Henares (Madrid, Spain).
Resumo:
This paper presents a computer vision system that successfully discriminates between weed patches and crop rows under uncontrolled lighting in real-time. The system consists of two independent subsystems, a fast image processing delivering results in real-time (Fast Image Processing, FIP), and a slower and more accurate processing (Robust Crop Row Detection, RCRD) that is used to correct the first subsystem's mistakes. This combination produces a system that achieves very good results under a wide variety of conditions. Tested on several maize videos taken of different fields and during different years, the system successfully detects an average of 95% of weeds and 80% of crops under different illumination, soil humidity and weed/crop growth conditions. Moreover, the system has been shown to produce acceptable results even under very difficult conditions, such as in the presence of dramatic sowing errors or abrupt camera movements. The computer vision system has been developed for integration into a treatment system because the ideal setup for any weed sprayer system would include a tool that could provide information on the weeds and crops present at each point in real-time, while the tractor mounting the spraying bar is moving