979 resultados para calcareous sinter, aqueduct, stable isotopes, Roman
Resumo:
Temporal and spatial patterns in eastern North Atlantic sea-surface temperatures (SST) were reconstructed for marine isotope stage (MIS) 11c using a submeridional transect of five sediment cores. The SST reconstructions are based on planktic foraminiferal abundances and alkenone indices, and are supported by benthic and planktic stable isotope measurements, as well as by ice-rafted debris content in polar and middle latitudes. Additionally, the larger-scale dynamics of the precipitation regime over northern Africa and the western Mediterranean region was evaluated from iron concentrations in marine sediments off NW Africa and planktic d13C in combination with analysis of planktic foraminiferal abundances down to the species level in the Mediterranean Sea. Compared to the modern situation, it is revealed that during entire MIS 11c sensu stricto (ss), i.e., between 420 and 398 ka according to our age models, a cold SST anomaly in the Nordic seas co-existed with a warm SST anomaly in the middle latitudes and the subtropics, resulting in steeper meridional SST gradients than during the Holocene. Such a SST pattern correlates well with a prevalence of a negative mode of the modern North Atlantic Oscillation. We suggest that our scenario might partly explain the longer duration of wet conditions in the northern Africa during MIS 11c compared to the Holocene.
Resumo:
During the Paleocene-Eocene Thermal Maximum (PETM) about 56 million years ago, thousands of petagrams of carbon were released into the atmosphere and ocean in just a few thousand years, followed by a gradual sequestration over approximately 200,000 years. If silicate weathering is one of the key negative feedbacks that removed this carbon, a period of seawater calcium carbonate saturation greater than pre-event levels is expected during the event's recovery phase. In marine sediments, this should be recorded as a temporary deepening of the depth below which no calcite is preserved - the calcite compensation depth (CCD). Previous and new sedimentary records from sites that were above the pre-PETM calcite compensation depth show enhanced carbonate accumulation following the PETM. A new record from an abyssal site in the North Atlantic that lay below the pre-PETM calcite compensation depth shows a period of carbonate preservation beginning about 70,000 years after the onset of the PETM, providing the first direct evidence for an over-deepening of the calcite compensation depth. This record confirms an overshoot in ocean carbonate saturation during the PETM recovery. Simulations with two earth system models support scenarios for the PETM that involve both a large initial carbon release followed by prolonged low-level emissions, consistent with the timing of CCD deepening in our record. Our findings indicate that sequestration of these carbon emissions was most likely the result of both globally enhanced calcite burial above the calcite compensation depth and, at least in the North Atlantic, by a temporary over-deepening of the calcite compensation depth.
Resumo:
With the examination of multinet catches (63 µm mesh size), the present study analyzes the distribution of planktonic foraminifera in Polar regions: the Labrador Sea, Greenland Sea at 75°N and Fram Strait at 80°N. The community of the planktonic foraminifera, which in the study area mainly consists of six species: left and right-coiling N. pachyderma, T. quinqueloba, G. bulloides, G. glutinata and G. uvula, is primarily controlled by the temperature in the different water masses. Besides hydrographic parameters, the changes in the horizontal and vertical distribution of N. pachyderma (s.) and T. quinqueloba as well as their shell size distribution in the study area are primarily influenced by the synchrone reproduction, which is coupled to the lunar cycle. Detailed examinations of the isotope signal in dependency on the shell size and weight for N. pachyderma (s.) and T. quinqueloba from plankton tows, indicated the weight or degree of calcification to not be the primary factor controlling the isotope signal of encrusted specimens.The d18O vital effect is primarily caused by the thermal stratification of the water column, whereas the d13C vital effect mainly results from the ontogenetic development.
Resumo:
A careful comparison is made between the most detailed records of sea level over the last glacial cycle, and two high-quality oxygen isotope records. One is a high-resolution benthonic record that contains superb detail but proves to record temperature change as well as ice volume; the other is a planktonic record from the west equatorial Pacific where the temperature effect may be minimal but where high resolution is not available. A combined record is generated which may be a better approximation to ice volume than was previously available. This approach cannot yet be applied to the whole Pleistocene. However, comparison of glacial extremes suggests that glacial extremes of stages 12 and 16 significantly exceeded the last glacial maximum as regards ice volume and hence as regards sea level lowering. Interglacial stages 7, 13, 15, 17 and 19 did not attain Holocene oxygen isotope values; possibly the sea did not reach its present level. It is unlikely that sea level was glacio-eustatically higher than present by more than a few metres during any interglacial of the past 2.5 million years.
Resumo:
Terrigenous sediment supply, marine transport, and depositional processes along tectonically active margins are key to decoding turbidite successions as potential archives of climatic and seismic forcings. Sequence stratigraphic models predict coarse-grained sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine siliciclastic deposition during transgressions and highstands has been attributed to sustained connectivity between terrigenous sources and marine sinks facilitated by narrow shelves. To decipher the controls on Holocene highstand turbidite deposition, we analyzed 12 sediment cores from spatially discrete, coeval turbidite systems along the Chile margin (29° - 40°S) with changing climatic and geomorphic characteristics but uniform changes in sea level. Sediment cores from intraslope basins in north-central Chile (29° - 33°S) offshore a narrow to absent shelf record a shut-off of turbidite deposition during the Holocene due to postglacial aridification. In contrast, core sites in south-central Chile (36° - 40°S) offshore a wide shelf record frequent turbidite deposition during highstand conditions. Two core sites are linked to the Biobío river-canyon system and receive sediment directly from the river mouth. However, intraslope basins are not connected via canyons to fluvial systems but yield even higher turbidite frequencies. High sediment supply combined with a wide shelf and an undercurrent moving sediment toward the shelf edge appear to control Holocene turbidite sedimentation and distribution. Shelf undercurrents may play an important role in lateral sediment transport and supply to the deep sea and need to be accounted for in sediment-mass balances.
Resumo:
This bibliography contains 455 references to articles from the open literature. An author index and literature reference source are also included.
Resumo:
δ13C and δ15N values were determined for the seagrassThalassia testudinum at four permanent seagrass monitoring stations in southFlorida, USA, through a quarterly sampling program over 3-years (1996–1998). All sites are seagrass beds with water depths of less than 6 m. Two sites are located on the Florida Bay side of the Florida Keys, and the other two sites are on the Atlantic side. The data analyzed over the 3 year study period display unique patterns associated with seasonal changes in primary productivity and potentially changes in the N and C pools. The mean carbon and nitrogenisotope values of T. testudinum from all four stations vary from −7.2 to −10.4‰ and 1.1 to 2.2‰, respectively. However, certain stations displayed anomalously depleted nitrogenisotope values (as low as −1.2‰). These values may indicate that biogeochemical processes like N fixation, ammonification and denitrification cause temporal changes in the isotopic composition of the source DIN. Both δ13C and δ15N values displayed seasonal enrichment-depletion patterns, with maximum enrichment occurring during the summer to early fall. The intra-annual variations of δ13C values from the different stations ranged from about 1 to 3.5‰; whereas variations in δ15N ranged from about 1 to 4.9‰. Certain sites showed a positive relationship between isotope values and productivity. These data indicate δ13C values display a high degree of seasonal variability as related to changes in productivity. δ15N values show clear intra-annual variations, but the observed changes do not necessarily follow a distinct seasonal cycle, indicating that changes in DIN will need further investigation.
Resumo:
Complex links between the top-down and bottomup forces that structure communities can be disrupted by anthropogenic alterations of natural habitats.We used relative abundance and stable isotopes to examine changes in epifaunal food webs in seagrass (Thalassia testudinum) beds following 6 months of experimental nutrient addition at two sites in Florida Bay (USA) with different ambient fertility. At a eutrophic site, nutrient addition did not strongly affect food web structure, but at a nutrient-poor site, enrichment increased the abundances of crustacean epiphyte grazers, and the diets of these grazers became more varied. Benthic grazers did not change in abundance but shifted their diet away from green macroalgae + associated epiphytes and towards an opportunistic seagrass (Halodule wrightii) that occurred only in nutrient addition treatments. Benthic predators did not change in abundance, but their diets were more varied in enriched plots. Food chain length was short and unaffected by site or nutrient treatment, but increased food web complexity in enriched plots was suggested by increasingly mixed diets. Strong bottom-up modifications of food web structure in the nutrient-limited site and the limited top-down influences of grazers on seagrass epiphyte biomass suggest that, in this system, the bottom-up role of nutrient enrichment can have substantial impacts on community structure, trophic relationships, and, ultimately, the productivity values of the ecosystem.
Resumo:
The degree of reliance of newborn sharks on energy reserves from maternal resource allocation and the timescales over which these animals develop foraging skills are critical factors towards understanding the ecological role of top predators in marine ecosystems. We used muscle tissue stable carbon isotopic composition and fatty acid analysis of bull sharks Carcharhinus leucas to investigate early-life feeding ecology in conjunction with maternal resource dependency. Values of δ13C of some young-of-the-year sharks were highly enriched, reflecting inputs from the marine-based diet and foraging locations of their mothers. This group of sharks also contained high levels of the 20:3ω9 fatty acid, which accumulates during periods of essential fatty acid deficiency, suggesting inadequate or undeveloped foraging skills and possible reliance on maternal provisioning. A loss of maternal signal in δ13C values occurred at a length of approximately 100 cm, with muscle tissue δ13C values reflecting a transition from more freshwater/estuarine-based diets to marine-based diets with increasing length. Similarly, fatty acids from sharks >100 cm indicated no signs of essential fatty acid deficiency, implying adequate foraging. By combining stable carbon isotopes and fatty acids, our results provided important constraints on the timing of the loss of maternal isotopic signal and the development of foraging skills in relation to shark size and imply that molecular markers such as fatty acids are useful for the determination of maternal resource dependency.
Resumo:
Stable isotope analysis has emerged as one of the primary means for examining the structure and dynamics of food webs, and numerous analytical approaches are now commonly used in the field. Techniques range from simple, qualitative inferences based on the isotopic niche, to Bayesian mixing models that can be used to characterize food-web structure at multiple hierarchical levels. We provide a comprehensive review of these techniques, and thus a single reference source to help identify the most useful approaches to apply to a given data set. We structure the review around four general questions: (1) what is the trophic position of an organism in a food web?; (2) which resource pools support consumers?; (3) what additional information does relative position of consumers in isotopic space reveal about food-web structure?; and (4) what is the degree of trophic variability at the intrapopulation level? For each general question, we detail different approaches that have been applied, discussing the strengths and weaknesses of each. We conclude with a set of suggestions that transcend individual analytical approaches, and provide guidance for future applications in the field.
Resumo:
The Everglades is a sub-tropical coastal wetland characterized among others by its hydrological features and deposits of peat. Formation and preservation of organic matter in soils and sediments in this wetland ecosystem is critical for its sustainability and hydrological processes are important divers in the origin, transport and fate of organic matter. With this in mind, organic matter dynamics in the greater Florida Everglades was studied though various organic geochemistry techniques, especially biomarkers, bulk and compound specific δ13C and δD isotope analysis. The main objectives were focused on how different hydrological regimes in this ecosystem control organic matter dynamics, such as the mobilization of particulate organic matter (POM) in freshwater marshes and estuaries, and how organic geochemistry techniques can be applied to reconstruct Everglades paleo-hydrology. For this purpose organic matter in typical vegetation, floc, surface soils, soil cores, and estuarine suspended particulates were characterized in samples selected along hydrological gradients in the Water Conservation Area 3, Shark River Slough and Taylor Slough. ^ This research focused on three general themes: (1) Assessment of the environmental dynamics and source-specific particulate organic carbon export in a mangrove-dominated estuary. (2) Assessment of the origin, transport and fate of organic matter in freshwater marsh. (3) Assessment of historical changes in hydrological conditions in the Everglades (paleo-hydrology) though biomarkes and compound specific isotope analyses. This study reports the first estimate of particulate organic carbon loss from mangrove ecosystems in the Everglades, provides evidence for particulate organic matter transport with regards to the formation of ridge and slough landscapes in the Everglades, and demonstrates the applicability of the combined biomarker and compound-specific stable isotope approach as a means to generate paleohydrological data in wetlands. The data suggests that: (1) Carbon loss from mangrove estuaries is roughly split 50/50 between dissolved and particulate carbon; (2) hydrological remobilization of particulate organic matter from slough to ridge environments may play an important role in the maintenance of the Everglades freshwater landscape; and (3) Historical changes in hydrology have resulted in significant vegetation shifts from historical slough type vegetation to present ridge type vegetation. ^
Resumo:
Top predators are known for their ability to 1) affect their communities through predation and 2) induce behavioral modifications. Recent research suggests that they may also play “bottom-up” roles in ecosystems, including transporting materials within and across habitat boundaries. The Florida Coastal Everglades (FCE) is an “upside-down” oligotrophic estuary where productivity decreases from the mouth of the estuary to freshwater marshes. Therefore, movements of predators may be important in ecosystem dynamics. While other estuarine predators in the FCE have been shown to potentially move nutrients among ecosystems, the potential for bottlenose dolphins (Tursiops truncatus) to play a similar role in the systems has not been investigated. Stable isotope analysis of biopsy samples were used to investigate spatial variation in trophic interactions of dolphins to see if they might transport nutrients. Values of δ15 N suggest dolphins feed at a trophic level similar to other top predators in the ecosystem while δ13 C suggest that dolphins forage largely within food webs where they were sampled rather than transporting nutrients across ecosystem boundaries. The exception may be dolphins foraging in rivers, which may transport nutrients downstream; a pattern opposite to that of bull sharks and alligators in these habitats. Further research is necessary to predict how future changes occurring due to restoration and climate will affect the ecological roles of dolphins.
Resumo:
Top predators are best known for their ability to affect their communities through inflicting mortality on prey and inducing behavioral modifications (e.g. risk effects). Recent scientific evidence suggests that predators may have additional roles in bottom-up processes such as transporting materials within and across habitat boundaries. The Florida Coastal Everglades (FCE) is an “upside-down” oligotrophic estuary where productivity decreases from the mouth of the estuary to freshwater marshes. Research in the FCE suggest that predators can act as mobile links between disparate habitats and can potentially affect nutrient and biogeochemical dynamics through localized behaviors (e.g. American alligators and juvenile bull sharks). To date, little is known about bottlenose dolphins (Tursiops truncatus) in the FCE beyond broad-scale patterns of abundance. Because they are highly mobile mammals commonly found in coastal waters, bottlenose dolphins are an interesting case study for investigating the influence of ecology on the evolution of local adaptations. Within this influence lies the potential for investigation of the related roles those adaptations play in coastal ecosystems due to their high metabolic rates, movement capabilities, and tendency to display specialized foraging behaviors. Stable isotope analysis of biopsy samples were used to investigate habitat use, trophic interactions, and patterns of individual specialization in bottlenose dolphins to gain functional insights into ecosystem dynamics. δ13 C isotopic values are used to differentiate the relative importance of a food web to the diet of an organism, while δ15 N values are used to evaluate the relative trophic position of an organism. Dolphin δ13 C isotopic values seem to suggest that dolphins are foraging within single ecosystems and may not be moving nutrients across ecosystem boundaries while their δ15 N isotopic values appear to be of a top predator, at a similar level to bull sharks and alligators in FCE. Further research is necessary to provide vital insight into the large predators’ role in affecting the evolution of local adaptations. Conducting this research should also provide information for predicting how future changes occurring due to restoration dynamics (see CERP: evergladesplan.org) and climate change will affect the ecological roles of these animals.
Resumo:
Top predators are best known for their ability to affect their communities through inflicting mortality on prey and inducing behavioral modifications (e.g. risk effects). Recent scientific evidence suggests that predators may have additional roles in bottom-up processes such as transporting materials within and across habitat boundaries. The Florida Coastal Everglades (FCE) is an “upside-down” oligotrophic estuary where productivity decreases from the mouth of the estuary to freshwater marshes. Research in the FCE suggest that predators can act as mobile links between disparate habitats and can potentially affect nutrient and biogeochemical dynamics through localized behaviors (e.g. American alligators and juvenile bull sharks). To date, little is known about bottlenose dolphins (Tursiops truncatus) in the FCE beyond broad-scale patterns of abundance. Because they are highly mobile mammals commonly found in coastal waters, bottlenose dolphins are an interesting case study for investigating the influence of ecology on the evolution of local adaptations. Within this influence lies the potential for investigation of the related roles those adaptations play in coastal ecosystems due to their high metabolic rates, movement capabilities, and tendency to display specialized foraging behaviors. Stable isotope analysis of biopsy samples were used to investigate habitat use, trophic interactions, and patterns of individual specialization in bottlenose dolphins to gain functional insights into ecosystem dynamics. δ13 C isotopic values are used to differentiate the relative importance of a food web to the diet of an organism, while δ15 N values are used to evaluate the relative trophic position of an organism. Dolphin δ13 C isotopic values seem to suggest that dolphins are foraging within single ecosystems and may not be moving nutrients across ecosystem boundaries while their δ15 N isotopic values appear to be of a top predator, at a similar level to bull sharks and alligators in FCE. Further research is necessary to provide vital insight into the large predators’ role in affecting the evolution of local adaptations. Conducting this research should also provide information for predicting how future changes occurring due to restoration dynamics (see CERP: evergladesplan.org) and climate change will affect the ecological roles of these animals.