914 resultados para box constraints


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It took the solar polar passage of Ulysses in the early 1990s to establish the global structure of the solar wind speed during solar minimum. However, it remains unclear if the solar wind is composed of two distinct populations of solar wind from different sources (e.g., closed loops which open up to produce the slow solar wind) or if the fast and slow solar wind rely on the superradial expansion of the magnetic field to account for the observed solar wind speed variation. We investigate the solar wind in the inner corona using the Wang-Sheeley-Arge (WSA) coronal model incorporating a new empirical magnetic topology–velocity relationship calibrated for use at 0.1 AU. In this study the empirical solar wind speed relationship was determined by using Helios perihelion observations, along with results from Riley et al. (2003) and Schwadron et al. (2005) as constraints. The new relationship was tested by using it to drive the ENLIL 3-D MHD solar wind model and obtain solar wind parameters at Earth (1.0 AU) and Ulysses (1.4 AU). The improvements in speed, its variability, and the occurrence of high-speed enhancements provide confidence that the new velocity relationship better determines the solar wind speed in the outer corona (0.1 AU). An analysis of this improved velocity field within the WSA model suggests the existence of two distinct mechanisms of the solar wind generation, one for fast and one for slow solar wind, implying that a combination of present theories may be necessary to explain solar wind observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The benefits and applications of virtual reality (VR) in the construction industry have been investigated for almost a decade. However, the practical implementation of VR in the construction industry has yet to reach maturity owing to technical constraints. The need for effective information management presents challenges: both transfer of building data to, and organisation of building information within, the virtual environment require consideration. This paper reviews the applications and benefits of VR in the built environment field and reports on a collaboration between Loughborough University and South Bank University to overcome constraints on the use of the overall VR model for whole lifecycle visualisation. The work at each research centre is concerned with an aspect of information management within VR applications for the built environment, and both data transfer and internal data organisation have been investigated. In this paper, similarities and differences between computer-aided design (CAD) and VR packages are first discussed. Three different approaches to the creation of VR models during the design stage are identified and described, with a view to providing sharing understanding across the interdiscipliary groups involved. The suitable organisation of building information within the virtual environment is then further investigated. This work focused on the visualisation of the degradation of a building, through its lifespan, with the view to provide a visual aid for developing an effective and economic project maintenance programme. Finally consideration is given to the potential of emerging standards to facilitate an integrated use of VR. The convergence towards similar data structures in VR and other construction packages may enable visualisation to be better utilised in the overall lifecycle model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energetic constraints on precipitation are useful for understanding the response of the hydrological cycle to ongoing climate change, its response to possible geoengineering schemes, and the limits on precipitation in very warm climates of the past. Much recent progress has been made in quantifying the different forcings and feedbacks on precipitation and in understanding how the transient responses of precipitation and temperature might differ qualitatively. Here, we introduce the basic ideas and review recent progress. We also examine the extent to which energetic constraints on precipitation may be viewed as radiative constraints and the extent to which they are confirmed by available observations. Challenges remain, including the need to better demonstrate the link between energetics and precipitation in observations and to better understand energetic constraints on precipitation at sub-global length scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to reconsider the Maximum Entropy Production conjecture (MEP) in the context of a very simple two-dimensional zonal-vertical climate model able to represent the total material entropy production due at the same time to both horizontal and vertical heat fluxes. MEP is applied first to a simple four-box model of climate which accounts for both horizontal and vertical material heat fluxes. It is shown that, under condition of fixed insolation, a MEP solution is found with reasonably realistic temperature and heat fluxes, thus generalising results from independent two-box horizontal or vertical models. It is also shown that the meridional and the vertical entropy production terms are independently involved in the maximisation and thus MEP can be applied to each subsystem with fixed boundary conditions. We then extend the four-box model by increasing its resolution, and compare it with GCM output. A MEP solution is found which is fairly realistic as far as the horizontal large scale organisation of the climate is concerned whereas the vertical structure looks to be unrealistic and presents seriously unstable features. This study suggest that the thermal meridional structure of the atmosphere is predicted fairly well by MEP once the insolation is given but the vertical structure of the atmosphere cannot be predicted satisfactorily by MEP unless constraints are imposed to represent the determination of longwave absorption by water vapour and clouds as a function of the state of the climate. Furthermore an order-of-magnitude estimate of contributions to the material entropy production due to horizontal and vertical processes within the climate system is provided by using two different methods. In both cases we found that approximately 40 mW m−2 K−1 of material entropy production is due to vertical heat transport and 5–7 mW m−2 K−1 to horizontal heat transport

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the determinants of commercial and retail airport revenues as well as revenues from real estate operations. Cross-sectional OLS, 2SLS and robust regression models of European airports identify a number of significant drivers of airport revenues. Aviation revenues per passenger are mainly determined by the national income per capita in which the airport is located, the percentage of leisure travelers and the size of the airport proxied by total aviation revenues. Main drivers of commercial revenues per passenger include the total number of passengers passing through the airport, the ratio of commercial to total revenues, the national income, the share of domestic and leisure travelers and the total number of flights. These results are in line with previous findings of a negative influence of business travelers on commercial revenues per passenger. We also find that a high amount of retail space per passenger is generally associated with lower commercial revenues per square meter confirming decreasing marginal revenue effects. Real estate revenues per passenger are positively associated with national income per capita at airport location, share of intra-EU passengers and percent delayed flights. Overall, aviation and non-aviation revenues appear to be strongly interlinked, underlining the potential for a comprehensive airport management strategy above and beyond mere cost minimization of the aviation sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the authors exploit two equivalent formulations of the average rate of material entropy production in the climate system to propose an approximate splitting between contributions due to vertical and eminently horizontal processes. This approach is based only on 2D radiative fields at the surface and at the top of atmosphere. Using 2D fields at the top of atmosphere alone, lower bounds to the rate of material entropy production and to the intensity of the Lorenz energy cycle are derived. By introducing a measure of the efficiency of the planetary system with respect to horizontal thermodynamic processes, it is possible to gain insight into a previous intuition on the possibility of defining a baroclinic heat engine extracting work from the meridional heat flux. The approximate formula of the material entropy production is verified and used for studying the global thermodynamic properties of climate models (CMs) included in the Program for Climate Model Diagnosis and Intercomparison (PCMDI)/phase 3 of the Coupled Model Intercomparison Project (CMIP3) dataset in preindustrial climate conditions. It is found that about 90% of the material entropy production is due to vertical processes such as convection, whereas the large-scale meridional heat transport contributes to only about 10% of the total. This suggests that the traditional two-box models used for providing a minimal representation of entropy production in planetary systems are not appropriate, whereas a basic—but conceptually correct—description can be framed in terms of a four-box model. The total material entropy production is typically 55 mW m−2 K−1, with discrepancies on the order of 5%, and CMs’ baroclinic efficiencies are clustered around 0.055. The lower bounds on the intensity of the Lorenz energy cycle featured by CMs are found to be around 1.0–1.5 W m−2, which implies that the derived inequality is rather stringent. When looking at the variability and covariability of the considered thermodynamic quantities, the agreement among CMs is worse, suggesting that the description of feedbacks is more uncertain. The contributions to material entropy production from vertical and horizontal processes are positively correlated, so that no compensation mechanism seems in place. Quite consistently among CMs, the variability of the efficiency of the system is a better proxy for variability of the entropy production due to horizontal processes than that of the large-scale heat flux. The possibility of providing constraints on the 3D dynamics of the fluid envelope based only on 2D observations of radiative fluxes seems promising for the observational study of planets and for testing numerical models.