911 resultados para boreal forest
Resumo:
The scope of the reducing emissions from deforestation and forest degradation (REDD) mechanism has broadened REDD+ to accommodate different country interests such as natural forests, protected areas, as well as forests under community-based management. In Tanzania the REDD+ mechanism is still under development and pilot projects are at an early stage. In this paper, we seek to understand how local priorities and needs could be met in REDD+ implementation and how these expectations match with global mitigation benefits. We examine the local priorities and needs in the use of land and forest resources in the Angai Villages Land Forest Reserve (AVLFR) in the Liwale District of Lindi Region in Tanzania. Primary data was collected in two villages, Mihumo and Lilombe, using semistructured key informant interviews and participatory rural appraisal methods. In addition, the key informant interviews were conducted with other village, district, and national level actors, as well as international donors. Findings show that in the two communities REDD+ is seen as something new and is generating new expectations among communities. However, the Angai villagers highlight three key priorities that have yet to be integrated into the design of REDD+: water scarcity, rural development, and food security. At the local level improved forest governance and sustainable management of forest resources have been identified as one way to achieve livelihood diversification. Although the national goals of REDD+ include poverty reduction, these goals are not necessarily conducive to the goals of these communities. There exist both structural and cultural limits to the ability of the Angai villages to implement these goals and to improve forestry governance. Given the vulnerability to current and future climate variability and change it will be important to consider how the AVLFR will be managed and for whose benefit?
Resumo:
Canopy leaf area index (LAI), defined as the single-sided leaf area per unit ground area, is a quantitative measure of canopy foliar area. LAI is a controlling biophysical property of vegetation function, and quantifying LAI is thus vital for understanding energy, carbon and water fluxes between the land surface and the atmosphere. LAI is routinely available from Earth Observation (EO) instruments such as MODIS. However EO-derived estimates of LAI require validation before they are utilised by the ecosystem modelling community. Previous validation work on the MODIS collection 4 (c4) product suggested considerable error especially in forested biomes, and as a result significant modification of the MODIS LAI algorithm has been made for the most recent collection 5 (c5). As a result of these changes the current MODIS LAI product has not been widely validated. We present a validation of the MODIS c5 LAI product over a 121 km2 area of mixed coniferous forest in Oregon, USA, based on detailed ground measurements which we have upscaled using high resolution EO data. Our analysis suggests that c5 shows a much more realistic temporal LAI dynamic over c4 values for the site we examined. We find improved spatial consistency between the MODIS c5 LAI product and upscaled in situ measurements. However results also suggest that the c5 LAI product underestimates the upper range of upscaled in situ LAI measurements.
Resumo:
Where joint forest management has been introduced into Tanzania, ‘volunteer’ patrollers take responsibility for enforcing restrictions over the harvesting of forest resources, often receiving as an incentive a share of the collected fine revenue. Using an optimal enforcement model, we explore how that share, and whether villagers have alternative sources of forest products, determines the effort patrollers put into enforcement and whether they choose to take a bribe rather than honestly reporting the illegal collection of forest resources. Without funds for paying and monitoring patrollers, policy makers face tradeoffs over illegal extraction, forest protection and revenue generation through fine collection.
Resumo:
Following the 1998 National Forest Policy and Forest Act of 2002, participatory forest management (PFM) is being introduced in Tanzania. PFM has two key objectives: to reduce forest degradation thereby increasing ecosystem services, and to improve the livelihoods of local villagers. A unique data set collected in 2006 suggests that significant challenges remain with respect to communicating the new forest policies if the objectives of PFM are to be achieved. First, villagers as a group are much less well informed than other stakeholders, and their knowledge is often inaccurate. Second, women are less likely than men to have heard of the changes. Third, how PFM will contribute to poverty reduction (a key objective of PFM) is not always clear. Fourth, environmental degradation may not be reduced as much as anticipated – without alternatives sources, villagers often continue to cut trees for charcoal and firewood in the protected forests. Finally, several mismatches in perceptions are identified that could lead to difficulties in implementing PFM.
Resumo:
• In a free-air CO2 enrichment study (BangorFACE) Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of one, two and three species mixtures (n=4). The trees were exposed to ambient or elevated CO2 (580 µmol mol-1) for four years, and aboveground growth characteristics measured. • In monoculture, the mean effect of CO2 enrichment on aboveground woody biomass was +29, +22 and +16% for A. glutinosa, F. sylvatica, and B. pendula respectively. When the same species were grown in polyculture, the response to CO2 switched to +10, +7 and 0%, for A. glutinosa, B. pendula, and F. sylvatica respectively. • In ambient atmosphere our species grown in polyculture increased aboveground woody biomass from 12.9 ± 1.4 kg m-2 to 18.9 ± 1.0 kg m-2, whereas in an elevated CO2 atmosphere aboveground woody biomass increased from 15.2 ± 0.6 kg m-2 to 20.2 ± 0.6 kg m-2. The overyielding effect of polyculture was smaller (+7%) in elevated CO2 than in an ambient atmosphere (+18%). • Our results show that the aboveground response to elevated CO2 is significantly affected by intra- and inter-specific competition, and that elevated CO2 response may be reduced in forest communities comprised of tree species with contrasting functional traits.
Resumo:
Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.
Resumo:
In recent years, researchers and policy makers have recognized that nontimber forest products (NTFPs) extracted from forests by rural people can make a significant contribution to their well-being and to the local economy. This study presents and discusses data that describe the contribution of NTFPs to cash income in the dry deciduous forests of Orissa and Jharkhand, India. In its focus on cash income, this study sheds light on how the sale of NTFPs and products that use NTFPs as inputs contribute to the rural economy. From analysis of a unique data set that was collected over the course of a year, the study finds that the contribution of NTFPs to cash income varies across ecological settings, seasons, income level, and caste. Such variation should inform where and when to apply NTFP forest access and management policies.
Resumo:
When villagers extract resources, such as fuelwood, fodder, or medicinal plants from forests, their decisions over where and how much to extract are influenced by market conditions, their particular opportunity costs of time, minimum consumption needs, and access to markets. This paper develops an optimization model of villagers’ extraction behavior that clarifies how, and under what conditions, policies that create incentives such as improved returns to extraction in a buffer zone might be used instead of adversarial enforcement efforts to protect a forest’s pristine ‘‘inner core.’’
Resumo:
This chapter takes the example of local African beekeeping to explore how the forest can act as an important locus for men's work in Western Tanzania. Here we scrutinise how beekeeping enables its practitioners to situate themselves in the forest locality and observe how the social relationships, interactions and everyday practices entailed in living and working together are a means through which beekeepers generate a sense of belonging and identity. As part and parcel of this process, men transmit their skills to a new generation, thus reproducing themselves and their social environment.