926 resultados para bone morphogenetic protein receptor 1B
Resumo:
Calcitonin receptor like-receptor is a family B G-protein coupled receptor (GPCR). It requires receptor activity modifying protein (RAMP) 1 to give a calcitonin gene-related peptide (CGRP) receptor. Little is known of how members of this receptor family function. Proline residues often form important kinks in alpha-helices. Therefore, all proline residues within the transmembrane helices of the receptor (Pro241, Pro244 in helix 4, Pro275 in helix 5, Pro321 and Pro331 in helix 6) were mutated to alanine. Pro241 Pro275, and Pro321 are highly conserved throughout all family B GPCRs. The binding of CGRP and its ability to stimulate cAMP production were investigated in mutant and wild-type receptors after transient transfection into COS-7 cells with RAMP1. The P321A mutation significantly decreased the pEC(50) for CGRP and reduced its affinity but did not change cell-surface expression. Antagonist binding [CGRP(8-37) and 1-piperidinecarboxamide N-[2-[[5amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3 5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quina zolinyl) (BIBN4096BS)] was little altered by the mutation. Adrenomedullin-mediated signaling was disrupted when P321A was coexpressed with RAMP1, RAMP2, or RAMP3. The P331A mutant produced a moderate reduction in CGRP binding and receptor activation. Mutation of the other residues had no effect on receptor function. Thus, Pro321 and Pro331 are required for agonist binding and receptor activation. Modeling suggested that Pro321 induces a bend in helix 6, bringing its C terminus near that of helix 3, as seen in many family A GPCRs. This is abolished in P321A. P321A-I325P predicted to restore this conformation, showed wild-type activation. Modeling can also rationalize the effects of transmembrane proline mutants previously reported for another family B GPCR, the VPAC(1) receptor.
Resumo:
Objective: C-Reactive protein (CRP) can modulate integrin surface expression on monocytes following Fcγ receptor engagement. We have investigated the signal transduction events causing this phenotypic alteration. Methods: CRP-induced signalling events were examined in THP-1 and primary monocytes, measuring Syk phosphorylation by Western blotting, intracellular Ca2+ ([Ca2+]i) by Indo-1 fluorescence and surface expression of CD11b by flow cytometry. Cytosolic peroxides were determined by DCF fluorescence. Results: CRP induced phosphorylation of Syk and an increase in [Ca2+]i both of which were inhibitable by the Syk specific antagonist, piceatannol. Piceatannol also inhibited the CRP-induced increase in surface CD11b. In addition, pre-treatment of primary monoytes with the Ca2+ mobiliser, thapsigargin, increased CD11b expression; this effect was accentuated in the presence of CRP but was abolished in the presence of the [Ca2+]i chelator, BAPTA. CRP also increased cytosolic peroxide levels; this effect was attenuated by antioxidants (ascorbate, α-tocopherol), expression of surface CD11b not being inhibited by antioxidants alone. Conclusion: CRP induces CD11b expression in monocytes through a peroxide independent pathway involving both Syk phosphorylation and [Ca2+]i release. © Birkhäuser Verlag, 2005.
Resumo:
Adrenomedullin (AM) and amylin are involved in angiogenesis/lymphangiogenesis and glucose homeostasis/food intake, respectively. They activate receptor activity-modifying protein (RAMP)/G protein-coupled receptor (GPCR) complexes. RAMP3 with the calcitonin receptor-like receptor (CLR) forms the AM(2) receptor, whereas when paired with the calcitonin receptor AMY(3) receptors are formed. RAMP3 interacts with other GPCRs although the consequences of these interactions are poorly understood. Therefore, variations in the RAMP3 sequence, such as single nucleotide polymorphisms or mutations could be relevant to human health. Variants of RAMP3 have been identified. In particular, analysis of AK222469 (Homo sapiens mRNA for receptor (calcitonin) activity-modifying protein 3 precursor variant) revealed several nucleotide differences, three of which encoded amino acid changes (Cys40Trp, Phe100Ser, Leu147Pro). Trp56Arg RAMP3 is a polymorphic variant of human RAMP3 at a conserved amino acid position. To determine their function we used wild-type (WT) human RAMP3 as a template for introducing amino acid mutations. Mutant or WT RAMP3 function was determined in Cos-7 cells with CLR or the calcitonin receptor (CT((a))). Cys40Trp/Phe100Ser/Leu147Pro RAMP3 was functionally compromised, with reduced AM and amylin potency at the respective AM(2) and AMY(3(a)) receptor complexes. Cys40Trp and Phe100Ser mutations contributed to this phenotype, unlike Leu147Pro. Reduced cell-surface expression of mutant receptor complexes probably explains the functional data. In contrast, Trp56Arg RAMP3 was WT in phenotype. This study provides insight into the role of these residues in RAMP3. The existence of AK222469 in the human population has implications for the function of RAMP3/GPCR complexes, particularly AM and amylin receptors.
Resumo:
Human adrenomedullin (AM) is a 52-amino acid peptide belonging to the calcitonin peptide family, which also includes calcitonin gene-related peptide (CGRP) and AM2. The two AM receptors, AM(1) and AM(2), are calcitonin receptor-like receptor (CL)/receptor activity-modifying protein (RAMP) (RAMP2 and RAMP3, respectively) heterodimers. CGRP receptors comprise CL/RAMP1. The only human AM receptor antagonist (AM(22-52)) is a truncated form of AM; it has low affinity and is only weakly selective for AM(1) over AM(2) receptors. To develop novel AM receptor antagonists, we explored the importance of different regions of AM in interactions with AM(1), AM(2), and CGRP receptors. AM(22-52) was the framework for generating further AM fragments (AM(26-52) and AM(30-52)), novel AM/alphaCGRP chimeras (C1-C5 and C9), and AM/AM(2) chimeras (C6-C8). cAMP assays were used to screen the antagonists at all receptors to determine their affinity and selectivity. Circular dichroism spectroscopy was used to investigate the secondary structures of AM and its related peptides. The data indicate that the structures of AM, AM2, and alphaCGRP differ from one another. Our chimeric approach enabled the identification of two nonselective high-affinity antagonists of AM(1), AM(2), and CGRP receptors (C2 and C6), one high-affinity antagonist of AM(2) receptors (C7), and a weak antagonist selective for the CGRP receptor (C5). By use of receptor mutagenesis, we also determined that the C-terminal nine amino acids of AM seem to be responsible for its interaction with Glu74 of RAMP3. We provide new information on the structure-activity relationship of AM, alphaCGRP, and AM2 and how AM interacts with CGRP and AM(2) receptors.
Resumo:
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysac-charide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor- production, IB degradation, p38 MAPK phosphorylation, and NF-B-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I·C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from 30 µM. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.
Resumo:
Modelling class B G-protein-coupled receptors (GPCRs) using class A GPCR structural templates is difficult due to lack of homology. The plant GPCR, GCR1, has homology to both class A and class B GPCRs. We have used this to generate a class A-class B alignment, and by incorporating maximum lagged correlation of entropy and hydrophobicity into a consensus score, we have been able to align receptor transmembrane regions. We have applied this analysis to generate active and inactive homology models of the class B calcitonin gene-related peptide (CGRP) receptor, and have supported it with site-directed mutagenesis data using 122 CGRP receptor residues and 144 published mutagenesis results on other class B GPCRs. The variation of sequence variability with structure, the analysis of polarity violations, the alignment of group-conserved residues and the mutagenesis results at 27 key positions were particularly informative in distinguishing between the proposed and plausible alternative alignments. Furthermore, we have been able to associate the key molecular features of the class B GPCR signalling machinery with their class A counterparts for the first time. These include the [K/R]KLH motif in intracellular loop 1, [I/L]xxxL and KxxK at the intracellular end of TM5 and TM6, the NPXXY/VAVLY motif on TM7 and small group-conserved residues in TM1, TM2, TM3 and TM7. The equivalent of the class A DRY motif is proposed to involve Arg(2.39), His(2.43) and Glu(3.46), which makes a polar lock with T(6.37). These alignments and models provide useful tools for understanding class B GPCR function.
Resumo:
Bone marrow stromal cells (BMSCs) have the potential to improve functional recovery in patients with spinal cord injury (SCI); however, they are limited by low survival rates after transplantation in the injured tissue. Our objective was to clarify the effects of a temporal blockade of interleukin 6 (IL-6)/IL-6 receptor (IL-6R) engagement using an anti-mouse IL-6R monoclonal antibody (MR16-1) on the survival rate of BMSCs after their transplantation in a mouse model of contusion SCI. MR16-1 cotreatment improved the survival rate of transplanted BMSCs, allowing some BMSCs to differentiate into neurons and astrocytes, and improved locomotor function recovery compared with BMSC transplantation or MR16-1 treatment alone. The death of transplanted BMSCs could be mainly related to apoptosis rather than necrosis. Transplantation of BMSC with cotreatment of MR16-1 was associated with a decrease of some proinflammatory cytokines, an increase of neurotrophic factors, decreased apoptosis rates of transplanted BMSCs, and enhanced expression of survival factors Akt and extracellular signal-regulated protein kinases 1/2. We conclude that MR16-1 treatment combined with BMSC transplants helped rescue neuronal cells and axons after contusion SCI better than BMSCs alone by modulating the inflammatory/immune responses and decreasing apoptosis. © 2013 by the American Association of Neuropathologists, Inc.
Resumo:
Background and Purpose Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear. Experimental Approach Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants. Key Results An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide. Conclusions and Implications RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.
Resumo:
Background and Purpose The glucagon-like peptide 1 (GLP-1) receptor performs an important role in glycaemic control, stimulating the release of insulin. It is an attractive target for treating type 2 diabetes. Recently, several reports of adverse side effects following prolonged use of GLP-1 receptor therapies have emerged: most likely due to an incomplete understanding of signalling complexities. Experimental Approach We describe the expression of the GLP-1 receptor in a panel of modified yeast strains that couple receptor activation to cell growth via single Gα/yeast chimeras. This assay enables the study of individual ligand-receptor G protein coupling preferences and the quantification of the effect of GLP-1 receptor ligands on G protein selectivity. Key Results The GLP-1 receptor functionally coupled to the chimeras representing the human Gαs, Gαi and Gαq subunits. Calculation of the dissociation constant for a receptor antagonist, exendin-3 revealed no significant difference between the two systems. We obtained previously unobserved differences in G protein signalling bias for clinically relevant therapeutic agents, liraglutide and exenatide; the latter displaying significant bias for the Gαi pathway. We extended the use of the system to investigate small-molecule allosteric compounds and the closely related glucagon receptor. Conclusions and Implications These results provide a better understanding of the molecular events involved in GLP-1 receptor pleiotropic signalling and establish the yeast platform as a robust tool to screen for more selective, efficacious compounds acting at this important class of receptors in the future. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Resumo:
G-protein coupled receptors (GPCRs) constitute the largest class of membrane proteins and are a major drug target. A serious obstacle to studying GPCR structure/function characteristics is the requirement to extract the receptors from their native environment in the plasma membrane, coupled with the inherent instability of GPCRs in the detergents required for their solubilization. In the present study, we report the first solubilization and purification of a functional GPCR [human adenosine A
Resumo:
Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.
Resumo:
Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine.