1000 resultados para biotic interaction
Resumo:
This paper examines to what extent crops and their environment should be viewed as a coupled system. Crop impact assessments currently use climate model output offline to drive process-based crop models. However, in regions where local climate is sensitive to land surface conditions more consistent assessments may be produced with the crop model embedded within the land surface scheme of the climate model. Using a recently developed coupled crop–climate model, the sensitivity of local climate, in particular climate variability, to climatically forced variations in crop growth throughout the tropics is examined by comparing climates simulated with dynamic and prescribed seasonal growth of croplands. Interannual variations in land surface properties associated with variations in crop growth and development were found to have significant impacts on near-surface fluxes and climate; for example, growing season temperature variability was increased by up to 40% by the inclusion of dynamic crops. The impact was greatest in dry years where the response of crop growth to soil moisture deficits enhanced the associated warming via a reduction in evaporation. Parts of the Sahel, India, Brazil, and southern Africa were identified where local climate variability is sensitive to variations in crop growth, and where crop yield is sensitive to variations in surface temperature. Therefore, offline seasonal forecasting methodologies in these regions may underestimate crop yield variability. The inclusion of dynamic crops also altered the mean climate of the humid tropics, highlighting the importance of including dynamical vegetation within climate models.
Resumo:
We review briefly recent progress on understanding the role of surface waves on the marine atmospheric boundary layer and the ocean mixed layer and give a global perspective on these processes by analysing ERA-40 data. Ocean surface waves interact with the marine atmospheric boundary layer in two broad regimes: (i) the conventional wind-driven wave regime, when fast winds blow over slower moving waves, and (ii) a wave-driven wind regime when long wavelength swell propagates under low winds, and generates a wave-driven jet in the lower part of the marine boundary layer. Analysis of ERA-40 data indicates that the wave-driven wind regime is as prevalent as the conventional wind-driven regime. Ocean surface waves also change profoundly mixing in the ocean mixed layer through generation of Langmuir circulation. Results from large-eddy simulation are used here to develop a scaling for the resulting Langmuir turbulence, which is a necessary step in developing a parametrization of the process. ERA-40 data is then used to show that the Langmuir regime is the predominant regime over much of the global ocean, providing a compelling motivation for parameterising this process in ocean general circulation models.
Resumo:
The soil-plant transfer factors for Cs and Sr were analyzed in relationship to soil properties, crops, and varieties of crops. Two crops and two varieties of each crop: lettuce (Lactuca sativa L.), cv. Salad Bowl Green and cv. Lobjoits Green Cos, and radish (Raphanus sativus L.), cv. French Breakfast 3 and cv. Scarlet Globe, were grown on five different soils amended with Cs and Sr to give concentrations of 1 mg kg(-1) and 50 mg kg(-1) of each element. Soil-plant transfer coefficients ranged between 0.12-19.10 (Cs) and 1.48-146.10 (Sr) for lettuce and 0.09-13.24 (Cs) and 2.99-93.00 (Sr) for radish. Uptake of Cs and Sr by plants depended on both plant and soil properties. There were significant (P less than or equal to 0.05) differences between soil-plant transfer factors for each plant type at the two soil concentrations. At each soil concentration about 60% of the variance in the uptake of the Cs and Sr was due to soil properties. For a given concentration of Cs or Sr in soil, the most important factor effecting soil-plant transfer of these elements was the soil properties rather than the crops or varieties of crops. Therefore, for the varieties considered here, soil-plant transfer of Cs and Sr would be best regulated through the management of soil properties. At each concentration of Cs and Sr, the main soil properties effecting the uptake of Cs and Sr by lettuce and radish were the concentrations of K and Ca, pH and CEC. Together with the concentrations of contaminants in soils, they explained about 80% of total data variance, and were the best predictors for soil-plant transfer. The different varieties of lettuce and radish gave different responses in soil-plant transfer of Cs and Sr in different soil conditions, i.e. genotype x environment interaction caused about 30% of the variability in the uptake of Cs and Sr by plants. This means that a plant variety with a low soil-plant transfer of Cs and Sr in one soil could have an increased soil-plant transfer factor in other soils. The broad implications of this work are that in contaminated agricultural lands still used for plant growing, contaminant-excluding crop varieties may not be a reliable method for decreasing contaminant transfer to foodstuffs. Modification of soil properties would be a more reliable technique. This is particularly relevant to agricultural soils in the former USSR still affected by fallout from the Chernobyl disaster.
Resumo:
Previous studies using the Hadley Centre coupled model (HadCM3) have shown that the islands of the Maritime Continent act as an unrealistic block to the eastward propagation of the Madden-Julian Oscillation (MJO). This blocking effect is investigated using a simplified, aqua-planet version of this GCM, with various idealized configurations of the Maritime Continent islands placed on the equator, and an MJO-like convective signal forced by a propagating sea-surface temperature anomaly dipole. Results suggest that it is the orography of the islands, rather than the presence of the islands themselves, which results in the blocking of the MJO. Although the peak elevation of the orography in the GCM is very much lower than in reality, it appears to act as effective block to the eastward propagation of the low-level Kelvin wave signal which accompanies the MJO. In particular, the representation of Sumatra in the GCM, as a north-south oriented ridge straddling the equator, seems to be particularly effective at blocking the Kelvin wave signal, which in a full GCM would result in the weakening or complete extinction of the MJO signal to the east of the Maritime Continent.
Resumo:
Model catalysts of Pd nanoparticles and films on TiO2 (I 10) were fabricated by metal vapour deposition (MVD). Molecular beam measurements show that the particles are active for CO adsorption, with a global sticking probability of 0.25, but that they are deactivated by annealing above 600 K, an effect indicative of SMSI. The Pd nanoparticles are single crystals oriented with their (I 11) plane parallel to the surface plane of the titania. Analysis of the surface by atomic resolution STM shows that new structures have formed at the surface of the Pd nanoparticles and films after annealing above 800 K. There are only two structures, a zigzag arrangement and a much more complex "pinwheel" structure. The former has a unit cell containing 7 atoms, and the latter is a bigger unit cell containing 25 atoms. These new structures are due to an overlayer of titania that has appeared on the surface of the Pd nanoparticles after annealing, and it is proposed that the surface layer that causes the SMSI effect is a mixed alloy of Pd and Ti, with only two discrete ratios of atoms: Pd/Ti of 1: 1 (pinwheel) and 1:2 (zigzag). We propose that it is these structures that cause the SMSI effect. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The Cassini flyby of Jupiter occurred at a time near solar maximum. Consequently, the pre-Jupiter data set reveals clear and numerous transient perturbations to the Parker Spiral solar wind structure. Limited plasma data are available at Cassini for this period due to pointing restrictions imposed on the instrument. This renders the identification of the nature of such structures ambiguous, as determinations based on the magnetic field data alone are unreliable. However, a fortuitous alignment of the planets during this encounter allowed us to trace these structures back to those observed previously by the Wind spacecraft near the Earth. Of the phenomena that we are satisfactorily able to trace back to their manifestation at 1 AU, two are identified as being due to interplanetary coronal mass ejections. One event at Cassini is shown to be a merged interaction region, which is formed from the compression of a magnetic cloud by two anomalously fast solar wind streams. The flux-rope structure associated with this magnetic cloud is not as apparent at Cassini and has most likely been compressed and deformed. Confirmation of the validity of the ballistic projections used here is provided by results obtained from a one-dimensional magnetohydrodynamic projection of solar wind parameters measured upstream near the Earth. It is found that when the Earth and Cassini are within a few tens of degrees in heliospheric longitude, the results of this one-dimensional model predict the actual conditions measured at 5 AU to an impressive degree. Finally, the validity of the use of such one-dimensional projections in obtaining quasi-solar wind parameters at the outer planets is discussed.
Resumo:
Virtual learning environments (VLEs) would appear to be particular effective in computer-supported collaborative work (CSCW) for active learning. Most research studies looking at computer-supported collaborative design have focused on either synchronous or asynchronous modes of communication, but near-synchronous working has received relatively little attention. Yet it could be argued that near-synchronous communication encourages creative, rhetorical and critical exchanges of ideas, building on each other’s contributions. Furthermore, although many researchers have carried out studies on collaborative design protocol, argumentation and constructive interaction, little is known about the interaction between drawing and dialogue in near-synchronous collaborative design. The paper reports the first stage of an investigation into the requirements for the design and development of interactive systems to support the learning of collaborative design activities. The aim of the study is to understand the collaborative design processes while sketching in a shared white board and audio conferencing media. Empirical data on design processes have been obtained from observation of seven sessions with groups of design students solving an interior space-planning problem of a lounge-diner in a virtual learning environment, Lyceum, an in-house software developed by the Open University to support its students in collaborative learning.
Resumo:
We consider boundary value problems for the N-wave interaction equations in one and two space dimensions, posed for x [greater-or-equal, slanted] 0 and x,y [greater-or-equal, slanted] 0, respectively. Following the recent work of Fokas, we develop an inverse scattering formalism to solve these problems by considering the simultaneous spectral analysis of the two ordinary differential equations in the associated Lax pair. The solution of the boundary value problems is obtained through the solution of a local Riemann–Hilbert problem in the one-dimensional case, and a nonlocal Riemann–Hilbert problem in the two-dimensional case.
Resumo:
Generally, ocean waves are thought to act as a drag on the surface wind so that momentum is transferred downwards, from the atmosphere into the waves. Recent observations have suggested that when long wavelength waves, characteristic of remotely generated swell, propagate faster than the surface wind momentum can also be transferred upwards. This upward momentum transfer acts to accelerate the near-surface wind, resulting in a low-level wave-driven wind jet. Previous studies have suggested that the sign reversal of the momentum flux is well predicted by the inverse wave age, the ratio of the surface wind speed to the speed of the waves at the peak of the spectrum. ECMWF ERA-40 data has been used here to calculate the global distribution of the inverse wave age to determine whether there are regions of the ocean that are usually in the wind-driven wave regime and others that are generally in the wave-driven wind regime. The wind-driven wave regime is found to occur most often in the mid-latitude storm tracks where wind speeds are generally high. The wave-driven wind regime is found to be prevalent in the tropics where wind speeds are generally light and swell can propagate from storms at higher latitudes. The inverse wave age is also a useful indicator of the degree of coupling between the local wind and wave fields. The climatologies presented emphasise the non-equilibrium that exists between the local wind and wave fields and highlight the importance of swell in the global oceans.