943 resultados para automated full waveform logging system
Resumo:
Many biological processes rely upon protein-protein interactions. Hence, detailed analysis of these interactions is critical for their understanding. Due to the complexities involved, genetic approaches are often needed. In yeast and phage, genetic characterizations of protein complexes are possible. However, in multicellular organisms, such characterizations are limited by the lack of powerful selection systems. Herein we describe genetic selections that allow single amino acid changes that disrupt protein-protein interactions to be selected from large libraries of randomly generated mutant alleles. The strategy, based on a yeast reverse two-hybrid system, involves a first-step negative selection for mutations that affect interaction, followed by a second-step positive selection for a subset of these mutations that maintain expression of full-length protein (two-step selection). We have selected such mutations in the transcription factor E2F1 that affect its ability to heterodimerize with DP1. The mutations obtained identified a putative helix in the marked box, a region conserved among E2F family members, as an important determinant for interaction. This two-step selection procedure can be used to characterize any interaction domain that can be tested in the two-hybrid system.
Resumo:
Adenoviral vector-mediated gene transfer offers significant potential for gene therapy of many human diseases. However, progress has been slowed by several limitations. First, the insert capacity of currently available adenoviral vectors is limited to 8 kb of foreign DNA. Second, the expression of viral proteins in infected cells is believed to trigger a cellular immune response that results in inflammation and in only transient expression of the transferred gene. We report the development of a new adenoviral vector that has all viral coding sequences removed. Thus, large inserts are accommodated and expression of all viral proteins is eliminated. The first application of this vector system carries a dual expression cassette comprising 28.2 kb of nonviral DNA that includes the full-length murine dystrophin cDNA under control of a large muscle-specific promoter and a lacZ reporter construct. Using this vector, we demonstrate independent expression of both genes in primary mdx (dystrophin-deficient) muscle cells.
Resumo:
Optokinetic and phototactic behaviors of zebrafish larvae were examined for their usefulness in screening for recessive defects in the visual system. The optokinetic response can be reliably and rapidly detected in 5-day larvae, whereas the phototactic response of larvae is variable and not robust enough to be useful for screening. We therefore measured optokinetic responses of mutagenized larvae as a genetic screen for visual system defects. Third-generation larvae, representing 266 mutagenized genomes, were examined for abnormal optokinetic responses. Eighteen optokinetic-defective mutants were identified and two mutants that did not show obvious morphological defects, no optokinetic response a (noa) and partial optokinetic response a (poa), were studied further. We recorded the electroretinogram (ERG) to determine whether these two mutations affect the retina. The b-wave of noa larvae was grossly abnormal, being delayed in onset and significantly reduced in amplitude. In contrast, the ERG waveform of poa larvae was normal, although the b-wave was reduced in amplitude in bright light. Histologically, the retinas of noa and poa larvae appeared normal. We conclude that noa larvae have a functional defect in the outer retina, whereas the outer retina of poa larvae is likely to be normal.
Resumo:
Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors.
Resumo:
We present Submillimeter Array [C II] 158 μm and Karl G. Jansky Very Large Array 12^CO(1-0) line emission maps for the bright, lensed, submillimeter source at z = 5.2430 behind A 773: HLSJ091828.6+514223 (HLS0918). We combine these measurements with previously reported line profiles, including multiple 12^CO rotational transitions, [C I], water, and [N II], providing some of the best constraints on the properties of the interstellar medium in a galaxy at z > 5. HLS0918 has a total far-infrared (FIR) luminosity L_FIR(8–1000 μm) = (1.6 ± 0.1) × 10^14 L_☉ μ^–1, where the total magnification μ_total = 8.9 ± 1.9, via a new lens model from the [C II] and continuum maps. Despite a HyLIRG luminosity, the FIR continuum shape resembles that of a local LIRG. We simultaneously fit all of the observed spectral line profiles, finding four components that correspond cleanly to discrete spatial structures identified in the maps. The two most redshifted spectral components occupy the nucleus of a massive galaxy, with a source-plane separation <1 kpc. The reddest dominates the continuum map (demagnified L_FIR, component = (1.1 ± 0.2) × 10^13 L_☉) and excites strong water emission in both nuclear components via a powerful FIR radiation field from the intense star formation. A third star-forming component is most likely a region of a merging companion (ΔV ~ 500 km s^–1) exhibiting generally similar gas properties. The bluest component originates from a spatially distinct region and photodissociation region analysis suggests that it is lower density, cooler, and forming stars less vigorously than the other components. Strikingly, it has very strong [N II] emission, which may suggest an ionized, molecular outflow. This comprehensive view of gas properties and morphology in HLS0918 previews the science possible for a large sample of high-redshift galaxies once ALMA attains full sensitivity.
Resumo:
We propose a secure full-duplex VoIP and instant messaging system on a Pocket PC platform, allowing for session key transport using a public-key protocol and encrypted text or voice communication using a private-key algorithm. The full-duplex VoIP scheme presents good performance for long duration communication over LAN networks.
Resumo:
The purpose of this paper is to derive the dynamical equations for the period vectors of a periodic system under constant external stress. The explicit starting point is Newton’s second law applied to halves of the system. Later statistics over indistinguishable translated states and forces associated with transport of momentum are applied to the resulting dynamical equations. In the final expressions, the period vectors are driven by the imbalance between internal and external stresses. The internal stress is shown to have both full interaction and kinetic-energy terms.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.
Resumo:
To shift to a low-carbon economy, the EU has been encouraging the deployment of variable renewable energy sources (VRE). However, VRE lack of competitiveness and their technical specificities have substantially raised the cost of the transition. Economic evaluations show that VRE life-cycle costs of electricity generation are still today higher than those of conventional thermal power plants. Member States have consequently adopted dedicated policies to support them. In addition, Ueckerdt et al. (2013) show that when integrated to the power system, VRE induce supplementary not-accounted-for costs. This paper first exposes the rationale of EU renewables goals, the EU targets and current deployment. It then explains why the LCOE metric is not appropriate to compute VRE costs by describing integration costs, their magnitude and their implications. Finally, it analyses the consequences for the power system and policy options. The paper shows that the EU has greatly underestimated VRE direct and indirect costs and that policymakers have failed to take into account the burden caused by renewable energy and the return of State support policies. Indeed, induced market distortions have been shattering the whole power system and have undermined competition in the Internal Energy Market. EU policymakers can nonetheless take full account of this negative trend and reverse it by relying on competition rules, setting-up a framework to collect robust EU-wide data, redesigning the architecture of the electricity system and relying on EU regulators.
Resumo:
Sister chromatid cohesion, mediated by the cohesin complex, is essential for faithful mitosis. Nevertheless, evidence suggests that the surveillance mechanism that governs mitotic fidelity, the spindle assembly checkpoint (SAC), is not robust enough to halt cell division when cohesion loss occurs prematurely. The mechanism behind this poor response is not properly understood. Using developing Drosophila brains, we show that full sister chromatid separation elicits a weak checkpoint response resulting in abnormal mitotic exit after a short delay. Quantitative live-cell imaging approaches combined with mathematical modeling indicate that weak SAC activation upon cohesion loss is caused by weak signal generation. This is further attenuated by several feedback loops in the mitotic signaling network. We propose that multiple feedback loops involving cyclin-dependent kinase 1 (Cdk1) gradually impair error-correction efficiency and accelerate mitotic exit upon premature loss of cohesion. Our findings explain how cohesion defects may escape SAC surveillance.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Texas Department of Transportation, Austin
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Transit Administration, Washington, D.C.