991 resultados para atmospheric remote sensing
Reorganization of a deeply incised drainage: role of deformation, sedimentation and groundwater flow
Resumo:
Deeply incised drainage networks are thought to be robust and not easily modified, and are commonly used as passive markers of horizontal strain. Yet, reorganizations (rearrangements) appear in the geologic record. We provide field evidence of the reorganization of a Miocene drainage network in response to strike-slip and vertical displacements in Guatemala. The drainage was deeply incised into a 50-km-wide orogen located along the North America-Caribbean plate boundary. It rearranged twice, first during the Late Miocene in response to transpressional uplift along the Polochic fault, and again in the Quaternary in response to transtensional uplift along secondary faults. The pattern of reorganization resembles that produced by the tectonic defeat of rivers that cross growing tectonic structures. Compilation of remote sensing data, field mapping, sediment provenance study, grain-size analysis and Ar(40)/Ar(39) dating from paleovalleys and their fill reveals that the classic mechanisms of river diversion, such as river avulsion over bedrock, or capture driven by surface runoff, are not sufficient to produce the observed diversions. The sites of diversion coincide spatially with limestone belts and reactivated fault zones, suggesting that solution-triggered or deformation-triggered permeability have helped breaching of interfluves. The diversions are also related temporally and spatially to the accumulation of sediment fills in the valleys, upstream of the rising structures. We infer that the breaching of the interfluves was achieved by headward erosion along tributaries fed by groundwater flow tracking from the valleys soon to be captured. Fault zones and limestone belts provided the pathways, and the aquifers occupying the valley fills provided the head pressure that enhanced groundwater circulation. The defeat of rivers crossing the rising structures results essentially from the tectonically enhanced activation of groundwater flow between catchments.
Resumo:
Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.
Resumo:
Com características morfológicas e edafo-climáticas extremamente diversificadas, a ilha de Santo Antão em Cabo Verde apresenta uma reconhecida vulnerabilidade ambiental a par de uma elevada carência de estudos científicos que incidam sobre essa realidade e sirvam de base à uma compreensão integrada dos fenómenos. A cartografia digital e as tecnologias de informação geográfica vêm proporcionando um avanço tecnológico na colecção, armazenamento e processamento de dados espaciais. Várias ferramentas actualmente disponíveis permitem modelar uma multiplicidade de factores, localizar e quantificar os fenómenos bem como e definir os níveis de contribuição de diferentes factores no resultado final. No presente estudo, desenvolvido no âmbito do curso de pós-graduação e mestrado em sistemas de Informação geográfica realizado pela Universidade de Trás-os-Montes e Alto Douro, pretende-se contribuir para a minimização do deficit de informação relativa às características biofísicas da citada ilha, recorrendo-se à aplicação de tecnologias de informação geográfica e detecção remota, associadas à análise estatística multivariada. Nesse âmbito, foram produzidas e analisadas cartas temáticas e desenvolvido um modelo de análise integrada de dados. Com efeito, a multiplicidade de variáveis espaciais produzidas, de entre elas 29 variáveis com variação contínua passíveis de influenciar as características biofísicas da região e, possíveis ocorrências de efeitos mútuos antagónicos ou sinergéticos, condicionam uma relativa complexidade à interpretação a partir dos dados originais. Visando contornar este problema, recorre-se a uma rede de amostragem sistemática, totalizando 921 pontos ou repetições, para extrair os dados correspondentes às 29 variáveis nos pontos de amostragem e, subsequente desenvolvimento de técnicas de análise estatística multivariada, nomeadamente a análise em componentes principais. A aplicação destas técnicas permitiu simplificar e interpretar as variáreis originais, normalizando-as e resumindo a informação contida na diversidade de variáveis originais, correlacionadas entre si, num conjunto de variáveis ortogonais (não correlacionadas), e com níveis de importância decrescente, as componentes principais. Fixou-se como meta a concentração de 75% da variância dos dados originais explicadas pelas primeiras 3 componentes principais e, desenvolveu-se um processo interactivo em diferentes etapas, eliminando sucessivamente as variáveis menos representativas. Na última etapa do processo as 3 primeiras CP resultaram em 74,54% da variância dos dados originais explicadas mas, que vieram a demonstrar na fase posterior, serem insuficientes para retratar a realidade. Optou-se pela inclusão da 4ª CP (CP4), com a qual 84% da referida variância era explicada e, representando oito variáveis biofísicas: a altitude, a densidade hidrográfica, a densidade de fracturação geológica, a precipitação, o índice de vegetação, a temperatura, os recursos hídricos e a distância à rede hidrográfica. A subsequente interpolação da 1ª componente principal (CP1) e, das principais variáveis associadas as componentes CP2, CP3 e CP4 como variáveis auxiliares, recorrendo a técnicas geoestatística em ambiente ArcGIS permitiu a obtenção de uma carta representando 84% da variação das características biofísicas no território. A análise em clusters validada pelo teste “t de Student” permitiu reclassificar o território em 6 unidades biofísicas homogéneas. Conclui-se que, as tecnologias de informação geográfica actualmente disponíveis a par de facilitar análises interactivas e flexíveis, possibilitando que se faça variar temas e critérios, integrar novas informações e introduzir melhorias em modelos construídos com bases em informações disponíveis num determinado contexto, associadas a técnicas de análise estatística multivariada, possibilitam, com base em critérios científicos, desenvolver a análise integrada de múltiplas variáveis biofísicas cuja correlação entre si, torna complexa a compreensão integrada dos fenómenos.
Resumo:
Los mapas de riesgo de inundaciones deberían mostrar las inundaciones en relación con los impactos potenciales que éstas pueden llegar a producir en personas, bienes y actividades. Por ello, es preciso añadir el concepto de vulnerabilidad al mero estudio del fenómeno físico. Así pues, los mapas de riesgo de daños por inundación son los verdaderos mapas de riesgo, ya que se elaboran, por una parte, a partir de cartografía que localiza y caracteriza el fenómeno físico de las inundaciones, y, por la otra, a partir de cartografía que localiza y caracteriza los elementos expuestos. El uso de las llamadas «nuevas tecnologías», como los SIG, la percepción remota, los sensores hidrológicos o Internet, representa un potencial de gran valor para el desarrollo de los mapas de riesgo de inundaciones, que es, hoy por hoy, un campo abierto a la investigación
Resumo:
Waveform-based tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of electrical properties in near-surface environments with unprecedented spatial resolution. A critical issue with waveform inversion is the a priori unknown source signal. Indeed, the estimation of the source pulse is notoriously difficult but essential for the effective application of this method. Here, we explore the viability and robustness of a recently proposed deconvolution-based procedure to estimate the source pulse during waveform inversion of crosshole georadar data, where changes in wavelet shape with location as a result of varying near-field conditions and differences in antenna coupling may be significant. Specifically, we examine whether a single, average estimated source current function can adequately represent the pulses radiated at all transmitter locations during a crosshole georadar survey, or whether a separate source wavelet estimation should be performed for each transmitter gather. Tests with synthetic and field data indicate that remarkably good tomographic reconstructions can be obtained using a single estimated source pulse when moderate to strong variability exists in the true source signal with antenna location. Only in the case of very strong variability in the true source pulse are tomographic reconstructions clearly improved by estimating a different source wavelet for each transmitter location.
Estimation of surface roughness in a semiarid region from C-band ERS-1 synthetic aperture radar data
Resumo:
In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS) height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80), while the wet season SAR data have somewhat higher secondary variation (R² = 0.59). This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.
Resumo:
This paper presents a differential synthetic apertureradar (SAR) interferometry (DIFSAR) approach for investigatingdeformation phenomena on full-resolution DIFSAR interferograms.In particular, our algorithm extends the capabilityof the small-baseline subset (SBAS) technique that relies onsmall-baseline DIFSAR interferograms only and is mainly focusedon investigating large-scale deformations with spatial resolutionsof about 100 100 m. The proposed technique is implemented byusing two different sets of data generated at low (multilook data)and full (single-look data) spatial resolution, respectively. Theformer is used to identify and estimate, via the conventional SBAStechnique, large spatial scale deformation patterns, topographicerrors in the available digital elevation model, and possibleatmospheric phase artifacts; the latter allows us to detect, onthe full-resolution residual phase components, structures highlycoherent over time (buildings, rocks, lava, structures, etc.), as wellas their height and displacements. In particular, the estimation ofthe temporal evolution of these local deformations is easily implementedby applying the singular value decomposition technique.The proposed algorithm has been tested with data acquired by theEuropean Remote Sensing satellites relative to the Campania area(Italy) and validated by using geodetic measurements.
Resumo:
Precise estimation of propagation parameters inprecipitation media is of interest to improve the performanceof communications systems and in remote sensing applications.In this paper, we present maximum-likelihood estimators ofspecific attenuation and specific differential phase in rain. Themodel used for obtaining the cited estimators assumes coherentpropagation, reflection symmetry of the medium, and Gaussianstatistics of the scattering matrix measurements. No assumptionsabout the microphysical properties of the medium are needed.The performance of the estimators is evaluated through simulateddata. Results show negligible estimators bias and variances closeto Cramer–Rao bounds.
Resumo:
Two-dimensional aperture synthesis radiometry is the technologyselected for ESA's SMOS mission to provide high resolution L-bandradiometric imagery. The array topology is a Y-shaped structure. Theposition and number of redundant elements to minimise instrumentdegradation in case of element failure(s) are studied.
Resumo:
The standard data fusion methods may not be satisfactory to merge a high-resolution panchromatic image and a low-resolution multispectral image because they can distort the spectral characteristics of the multispectral data. The authors developed a technique, based on multiresolution wavelet decomposition, for the merging and data fusion of such images. The method presented consists of adding the wavelet coefficients of the high-resolution image to the multispectral (low-resolution) data. They have studied several possibilities concluding that the method which produces the best results consists in adding the high order coefficients of the wavelet transform of the panchromatic image to the intensity component (defined as L=(R+G+B)/3) of the multispectral image. The method is, thus, an improvement on standard intensity-hue-saturation (IHS or LHS) mergers. They used the ¿a trous¿ algorithm which allows the use of a dyadic wavelet to merge nondyadic data in a simple and efficient scheme. They used the method to merge SPOT and LANDSATTM images. The technique presented is clearly better than the IHS and LHS mergers in preserving both spectral and spatial information.
Resumo:
Weather radar observations are currently the most reliable method for remote sensing of precipitation. However, a number of factors affect the quality of radar observations and may limit seriously automated quantitative applications of radar precipitation estimates such as those required in Numerical Weather Prediction (NWP) data assimilation or in hydrological models. In this paper, a technique to correct two different problems typically present in radar data is presented and evaluated. The aspects dealt with are non-precipitating echoes - caused either by permanent ground clutter or by anomalous propagation of the radar beam (anaprop echoes) - and also topographical beam blockage. The correction technique is based in the computation of realistic beam propagation trajectories based upon recent radiosonde observations instead of assuming standard radio propagation conditions. The correction consists of three different steps: 1) calculation of a Dynamic Elevation Map which provides the minimum clutter-free antenna elevation for each pixel within the radar coverage; 2) correction for residual anaprop, checking the vertical reflectivity gradients within the radar volume; and 3) topographical beam blockage estimation and correction using a geometric optics approach. The technique is evaluated with four case studies in the region of the Po Valley (N Italy) using a C-band Doppler radar and a network of raingauges providing hourly precipitation measurements. The case studies cover different seasons, different radio propagation conditions and also stratiform and convective precipitation type events. After applying the proposed correction, a comparison of the radar precipitation estimates with raingauges indicates a general reduction in both the root mean squared error and the fractional error variance indicating the efficiency and robustness of the procedure. Moreover, the technique presented is not computationally expensive so it seems well suited to be implemented in an operational environment.
Resumo:
Usual image fusion methods inject features from a high spatial resolution panchromatic sensor into every low spatial resolution multispectral band trying to preserve spectral signatures and improve spatial resolution to that of the panchromatic sensor. The objective is to obtain the image that would be observed by a sensor with the same spectral response (i.e., spectral sensitivity and quantum efficiency) as the multispectral sensors and the spatial resolution of the panchromatic sensor. But in these methods, features from electromagnetic spectrum regions not covered by multispectral sensors are injected into them, and physical spectral responses of the sensors are not considered during this process. This produces some undesirable effects, such as resolution overinjection images and slightly modified spectral signatures in some features. The authors present a technique which takes into account the physical electromagnetic spectrum responses of sensors during the fusion process, which produces images closer to the image obtained by the ideal sensor than those obtained by usual wavelet-based image fusion methods. This technique is used to define a new wavelet-based image fusion method.
Resumo:
This paper describes the development and applications of a super-resolution method, known as Super-Resolution Variable-Pixel Linear Reconstruction. The algorithm works combining different lower resolution images in order to obtain, as a result, a higher resolution image. We show that it can make significant spatial resolution improvements to satellite images of the Earth¿s surface allowing recognition of objects with size approaching the limiting spatial resolution of the lower resolution images. The algorithm is based on the Variable-Pixel Linear Reconstruction algorithm developed by Fruchter and Hook, a well-known method in astronomy but never used for Earth remote sensing purposes. The algorithm preserves photometry, can weight input images according to the statistical significance of each pixel, and removes the effect of geometric distortion on both image shape and photometry. In this paper, we describe its development for remote sensing purposes, show the usefulness of the algorithm working with images as different to the astronomical images as the remote sensing ones, and show applications to: 1) a set of simulated multispectral images obtained from a real Quickbird image; and 2) a set of multispectral real Landsat Enhanced Thematic Mapper Plus (ETM+) images. These examples show that the algorithm provides a substantial improvement in limiting spatial resolution for both simulated and real data sets without significantly altering the multispectral content of the input low-resolution images, without amplifying the noise, and with very few artifacts.
The combined use of reflectance, emissivity and elevation Aster/Terra data for tropical soil studies
Resumo:
Reflectance, emissivity and elevation data of the sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)/Terra were used to characterize soil composition variations according to the toposequence position. Normalized data of SWIR (shortwave infrared) reflectance and TIR (thermal infrared) emissivity, coupled to a soil-fraction image from a spectral mixture model, were evaluated to separate bare soils from nonphotosynthetic vegetation. Regression relationships of some soil properties with reflectance and emissivity data were then applied on the exposed soil pixels. The resulting estimated values were plotted on the ASTER-derived digital elevation model. Results showed that the SWIR bands 5 and 6 and the TIR bands 10 and 14 measured the clay mineral absorption band and the quartz emissivity feature, respectively. These bands improved also the discrimination between nonphotosynthetic vegetation and soils. Despite the differences in pixel size and field sampling size, some soil properties were correlated with reflectance (R² of 0.65 for Al2O3 in band 6; 0.61 for Fe2O3 in band 3) and emissivity (R² of 0.65 for total sand fraction in the 10/14 band ratio). The combined use of reflectance, emissivity and elevation data revealed variations in soil composition with topography in specific parts of the landscape. From higher to lower slope positions, a general decrease in Al2O3 and increase in total sand fraction was observed, due to the prevalence of Rhodic Acrustox at the top and its gradual transition to Typic Acrustox at the bottom.
Resumo:
Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.