928 resultados para atmospheric emission


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During April and May 2010 the ash cloud from the eruption of the Icelandic volcano Eyjafjallajökull caused widespread disruption to aviation over northern Europe. The location and impact of the eruption led to a wealth of observations of the ash cloud were being obtained which can be used to assess modelling of the long range transport of ash in the troposphere. The UK FAAM (Facility for Airborne Atmospheric Measurements) BAe-146-301 research aircraft overflew the ash cloud on a number of days during May. The aircraft carries a downward looking lidar which detected the ash layer through the backscatter of the laser light. In this study ash concentrations derived from the lidar are compared with simulations of the ash cloud made with NAME (Numerical Atmospheric-dispersion Modelling Environment), a general purpose atmospheric transport and dispersion model. The simulated ash clouds are compared to the lidar data to determine how well NAME simulates the horizontal and vertical structure of the ash clouds. Comparison between the ash concentrations derived from the lidar and those from NAME is used to define the fraction of ash emitted in the eruption that is transported over long distances compared to the total emission of tephra. In making these comparisons possible position errors in the simulated ash clouds are identified and accounted for. The ash layers seen by the lidar considered in this study were thin, with typical depths of 550–750 m. The vertical structure of the ash cloud simulated by NAME was generally consistent with the observed ash layers, although the layers in the simulated ash clouds that are identified with observed ash layers are about twice the depth of the observed layers. The structure of the simulated ash clouds were sensitive to the profile of ash emissions that was assumed. In terms of horizontal and vertical structure the best results were obtained by assuming that the emission occurred at the top of the eruption plume, consistent with the observed structure of eruption plumes. However, early in the period when the intensity of the eruption was low, assuming that the emission of ash was uniform with height gives better guidance on the horizontal and vertical structure of the ash cloud. Comparison of the lidar concentrations with those from NAME show that 2–5% of the total mass erupted by the volcano remained in the ash cloud over the United Kingdom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the recovery of Arctic sea ice from prescribed ice-free summer conditions in simulations of 21st century climate in an atmosphere–ocean general circulation model. We find that ice extent recovers typically within two years. The excess oceanic heat that had built up during the ice-free summer is rapidly returned to the atmosphere during the following autumn and winter, and then leaves the Arctic partly through increased longwave emission at the top of the atmosphere and partly through reduced atmospheric heat advection from lower latitudes. Oceanic heat transport does not contribute significantly to the loss of the excess heat. Our results suggest that anomalous loss of Arctic sea ice during a single summer is reversible, as the ice–albedo feedback is alleviated by large-scale recovery mechanisms. Hence, hysteretic threshold behavior (or a “tipping point”) is unlikely to occur during the decline of Arctic summer sea-ice cover in the 21st century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and the carbon cycle. Isoprene is quantitatively the most important of the non-methane BVOCs (NMBVOCs), with an annual emission of about 400–600 TgC; about 90% of this is emitted by terrestrial plants. Incorporating a mechanistic treatment of isoprene emissions within land-surface schemes has recently become a focus for the modelling community, the aim being to quantify the potential magnitude of associated climate feedbacks. However, these efforts are hampered by major uncertainties about why plants emit isoprene and the relative importance of different environmental controls on isoprene emission. The availability and reliability of observations of isoprene fluxes from different types of vegetation is limited, and this also imposes constraints on model development. Nevertheless, progress is being made towards the development of mechanistic models of isoprene emission which, in conjunction with atmospheric chemistry models, will ultimately allow improved quantification of the feedbacks between the terrestrial biosphere and climate under past and future climate states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urban land surface models (LSM) are commonly evaluated for short periods (a few weeks to months) because of limited observational data. This makes it difficult to distinguish the impact of initial conditions on model performance or to consider the response of a model to a range of possible atmospheric conditions. Drawing on results from the first urban LSM comparison, these two issues are considered. Assessment shows that the initial soil moisture has a substantial impact on the performance. Models initialised with soils that are too dry are not able to adjust their surface sensible and latent heat fluxes to realistic values until there is sufficient rainfall. Models initialised with too wet soils are not able to restrict their evaporation appropriately for periods in excess of a year. This has implications for short term evaluation studies and implies the need for soil moisture measurements to improve data assimilation and model initialisation. In contrast, initial conditions influencing the thermal storage have a much shorter adjustment timescale compared to soil moisture. Most models partition too much of the radiative energy at the surface into the sensible heat flux at the probable expense of the net storage heat flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective was to measure effects of 3-nitrooxypropanol (3NP) on methane production of lactating dairy cows and any associated changes in digestion and energy and nitrogen metabolism. Six Holstein-Friesian dairy cows in mid-lactation were fed twice daily a total mixed ration with maize silage as the primary forage source. Cows received 1 of 3 treatments using an experimental design based on two 3 × 3 Latin squares with 5-wk periods. Treatments were a control placebo or 500 or 2,500 mg/d of 3NP delivered directly into the rumen, via the rumen fistula, in equal doses before each feeding. Measurements of methane production and energy and nitrogen balance were obtained during wk 5 of each period using respiration calorimeters and digestion trials. Measurements of rumen pH (48 h) and postprandial volatile fatty acid and ammonia concentrations were made at the end of wk 4. Daily methane production was reduced by 3NP, but the effects were not dose dependent (reductions of 6.6 and 9.8% for 500 and 2,500 mg/d, respectively). Dosing 3NP had a transitory inhibitory effect on methane production, which may have been due to the product leaving the rumen in liquid outflow or through absorption or metabolism. Changes in rumen concentrations of volatile fatty acids indicated that the pattern of rumen fermentation was affected by both doses of the product, with a decrease in acetate:propionate ratio observed, but that acetate production was inhibited by the higher dose. Dry matter, organic matter, acid detergent fiber, N, and energy digestibility were reduced at the higher dose of the product. The decrease in digestible energy supply was not completely countered by the decrease in methane excretion such that metabolizable energy supply, metabolizable energy concentration of the diet, and net energy balance (milk plus tissue energy) were reduced by the highest dose of 3NP. Similarly, the decrease in nitrogen digestibility at the higher dose of the product was associated with a decrease in body nitrogen balance that was not observed for the lower dose. Milk yield and milk fat concentration and fatty acid composition were not affected but milk protein concentration was greater for the higher dose of 3NP. Twice-daily rumen dosing of 3NP reduced methane production by lactating dairy cows, but the dose of 2,500 mg/d reduced rumen acetate concentration, diet digestibility, and energy supply. Further research is warranted to determine the optimal dose and delivery method of the product. Key words: 3-nitrooxypropanol, methane, digestion, rumen, dairy cow

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we explore the possibility of deriving low-dimensional models of the dynamics of the Martian atmosphere. The analysis consists of a Proper Orthogonal Decomposition (POD) of the atmospheric streamfunction after first decomposing the vertical structure with a set of eigenmodes. The vertical modes were obtained from the quasi-geostrophic vertical structure equation. The empirical orthogonal functions (EOFs) were optimized to represent the atmospheric total energy. The total energy was used as the criterion to retain those modes with large energy content and discard the rest. The principal components (PCs) were analysed by means of Fourier analysis, so that the dominant frequencies could be identified. It was possible to observe the strong influence of the diurnal cycle and to identify the motion and vacillation of baroclinic waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] We present a model of the dust cycle that successfully predicts dust emissions as determined by land surface properties, monthly vegetation and snow cover, and 6-hourly surface wind speeds for the years 1982–1993. The model takes account of the role of dry lake beds as preferential source areas for dust emission. The occurrence of these preferential sources is determined by a water routing and storage model. The dust source scheme also explicitly takes into account the role of vegetation type as well as monthly vegetation cover. Dust transport is computed using assimilated winds for the years 1987–1990. Deposition of dust occurs through dry and wet deposition, where subcloud scavenging is calculated using assimilated precipitation fields. Comparison of simulated patterns of atmospheric dust loading with the Total Ozone Mapping Spectrometer satellite absorbing aerosol index shows that the model produces realistic results from daily to interannual timescales. The magnitude of dust deposition agrees well with sediment flux data from marine sites. Emission of submicron dust from preferential source areas are required for the computation of a realistic dust optical thickness. Sensitivity studies show that Asian dust source strengths are particularly sensitive to the seasonality of vegetation cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric dust is an important feedback in the climate system, potentially affecting the radiative balance and chemical composition of the atmosphere and providing nutrients to terrestrial and marine ecosystems. Yet the potential impact of dust on the climate system, both in the anthropogenically disturbed future and the naturally varying past, remains to be quantified. The geologic record of dust provides the opportunity to test earth system models designed to simulate dust. Records of dust can be obtained from ice cores, marine sediments, and terrestrial (loess) deposits. Although rarely unequivocal, these records document a variety of processes (source, transport and deposition) in the dust cycle, stored in each archive as changes in clay mineralogy, isotopes, grain size, and concentration of terrigenous materials. Although the extraction of information from each type of archive is slightly different, the basic controls on these dust indicators are the same. Changes in the dust flux and particle size might be controlled by a combination of (a) source area extent, (b) dust emission efficiency (wind speed) and atmospheric transport, (c) atmospheric residence time of dust, and/or (d) relative contributions of dry settling and rainout of dust. Similarly, changes in mineralogy reflect (a) source area mineralogy and weathering and (b) shifts in atmospheric transport. The combination of these geological data with process-based, forward-modelling schemes in global earth system models provides an excellent means of achieving a comprehensive picture of the global pattern of dust accumulation rates, their controlling mechanisms, and how those mechanisms may vary regionally. The Dust Indicators and Records of Terrestrial and MArine Palaeoenvironments (DIRTMAP) data base has been established to provide a global palaeoenvironmental data set that can be used to validate earth system model simulations of the dust cycle over the past 150,000 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As weather and climate models move toward higher resolution, there is growing excitement about potential future improvements in the understanding and prediction of atmospheric convection and its interaction with larger-scale phenomena. A meeting in January 2013 in Dartington, Devon was convened to address the best way to maximise these improvements, specifically in a UK context but with international relevance. Specific recommendations included increased convective-scale observations, high-resolution virtual laboratories, and a system of parameterization test beds with a range of complexities. The main recommendation was to facilitate the development of physically based convective parameterizations that are scale-aware, non-local, non-equilibrium, and stochastic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Last fall, a network of the European Cooperation in Science and Technology (COST), called “Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models” (COST Action ES0905; see http://w3.cost.esf.org/index.php?id=205&action_number=ES0905), organized a 10-day training course on atmospheric convection and its parameterization. The aim of the workshop, held on the island of Brac, Croatia, was to help young scientists develop an in-depth understanding of the core theory underpinning convection parameterizations. The speakers also sought to impart an appreciation of the various approximations, compromises, and ansatz necessary to translate theory into operational practice for numerical models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over Arctic sea ice, pressure ridges and floe andmelt pond edges all introduce discrete obstructions to the flow of air or water past the ice and are a source of form drag. In current climate models form drag is only accounted for by tuning the air–ice and ice–ocean drag coefficients, that is, by effectively altering the roughness length in a surface drag parameterization. The existing approach of the skin drag parameter tuning is poorly constrained by observations and fails to describe correctly the physics associated with the air–ice and ocean–ice drag. Here, the authors combine recent theoretical developments to deduce the total neutral form drag coefficients from properties of the ice cover such as ice concentration, vertical extent and area of the ridges, freeboard and floe draft, and the size of floes and melt ponds. The drag coefficients are incorporated into the Los Alamos Sea Ice Model (CICE) and show the influence of the new drag parameterization on the motion and state of the ice cover, with the most noticeable being a depletion of sea ice over the west boundary of the Arctic Ocean and over the Beaufort Sea. The new parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. It is found that the range of values predicted for the drag coefficients agree with the range of values measured in several regions of the Arctic. Finally, the implications of the new form drag formulation for the spinup or spindown of the Arctic Ocean are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Anthropogenic activity has increased the level of atmospheric CO2, which is driving an increase of global temperatures and associated changes in precipitation patterns. At Northern latitudes, one of the likely consequences of global warming is increased precipitation and air humidity. Aims: In this work, the effects of both elevated atmospheric CO2 and increased air humidity on trees commonly growing in northern European forests were assessed. Methods: The work was carried out under field conditions by using Free Air Carbon dioxide Enrichment (FACE) and Free Air Humidity Manipulation (FAHM) systems. Leaf litter fall was measured over 4 years (FACE) or 5 years (FAHM) to determine the effects of FACE and FAHM on leaf phenology. Results: Increasing air humidity delayed leaf litter fall in Betula pendula, but not in Populus tremula × tremuloides. Similarly, under elevated atmospheric CO2, leaf litter fall was delayed in Betula pendula, but not in Alnus glutinosa. Increased CO2 appeared to interact with periods of low precipitation in summer and high ozone levels during these periods to effect leaf fall. Conclusions: This work shows that increased CO2 and humidity delay leaf fall, but this effect is species specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We illustrate how coupling could occur between surface air and clouds via the global electric circuit – through Atmospheric Lithosphere–Ionosphere Charge Exchange (ALICE) processes – in an attempt to develop a physical understanding of the possible relationships between earthquakes and clouds