961 resultados para approximation method
Resumo:
Most real-life data analysis problems are difficult to solve using exact methods, due to the size of the datasets and the nature of the underlying mechanisms of the system under investigation. As datasets grow even larger, finding the balance between the quality of the approximation and the computing time of the heuristic becomes non-trivial. One solution is to consider parallel methods, and to use the increased computational power to perform a deeper exploration of the solution space in a similar time. It is, however, difficult to estimate a priori whether parallelisation will provide the expected improvement. In this paper we consider a well-known method, genetic algorithms, and evaluate on two distinct problem types the behaviour of the classic and parallel implementations.
Resumo:
Subdiffusion equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we consider the time distributed-order and Riesz space fractional diffusions on bounded domains with Dirichlet boundary conditions. Here, the time derivative is defined as the distributed-order fractional derivative in the Caputo sense, and the space derivative is defined as the Riesz fractional derivative. First, we discretize the integral term in the time distributed-order and Riesz space fractional diffusions using numerical approximation. Then the given equation can be written as a multi-term time–space fractional diffusion. Secondly, we propose an implicit difference method for the multi-term time–space fractional diffusion. Thirdly, using mathematical induction, we prove the implicit difference method is unconditionally stable and convergent. Also, the solvability for our method is discussed. Finally, two numerical examples are given to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
In this paper, we consider a two-sided space-fractional diffusion equation with variable coefficients on a finite domain. Firstly, based on the nodal basis functions, we present a new fractional finite volume method for the two-sided space-fractional diffusion equation and derive the implicit scheme and solve it in matrix form. Secondly, we prove the stability and convergence of the implicit fractional finite volume method and conclude that the method is unconditionally stable and convergent. Finally, some numerical examples are given to show the effectiveness of the new numerical method, and the results are in excellent agreement with theoretical analysis.
Resumo:
Anatomically pre-contoured fracture fixation plates are a treatment option for bone fractures. A well-fitting plate can be used as a tool for anatomical reduction of the fractured bone. However, recent studies showed that some plates fit poorly for many patients due to considerable shape variations between bones of the same anatomical site. Therefore, the plates have to be manually fitted and deformed by surgeons to fit each patient optimally. The process is time-intensive and labor-intensive, and could lead to adverse clinical implications such as wound infection or plate failure. This paper proposes a new iterative method to simulate the patient-specific deformation of an optimally fitting plate for pre-operative planning purposes. We further demonstrate the validation of the method through a case study. The proposed method involves the integration of four commercially available software tools, Matlab, Rapidform2006, SolidWorks, and ANSYS, each performing specific tasks to obtain a plate shape that fits optimally for an individual tibia and is mechanically safe. A typical challenge when crossing multiple platforms is to ensure correct data transfer. We present an example of the implementation of the proposed method to demonstrate successful data transfer between the four platforms and the feasibility of the method.
Resumo:
Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.
Resumo:
The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.
Resumo:
In this paper, my aim is to address the twin concerns raised in this session - models of practice and geographies or spaces of practice - through regarding a selection of works and processes that have arisen from my recent research. Setting up this discussion, I first present a short critique of the idea of models of creative practice, recognising possible problems with the attempt to generalise or abstract its complexities. Working through a series of portraits of my working environment, I will draw from Lefebvre’s Rhythmanalysis as a way of understanding an art practice both spatially and temporally, suggesting that changes and adjustments can occur through attending to both intuitions and observations of the complex of rhythmic layers constantly at play in any event. Reflecting on my recent studio practice I explore these rhythms through the evocation of a twin axis: the horizontal and the vertical and the arcs of difference or change that occur between them, in both spatial and temporal senses. What this analysis suggests is the idea that understanding does not only emerge from the construction of general principles, derived from observation of the particular, but that the study of rhythms allows us to maintain the primacy of the particular. This makes it well suited to a study of creative methods and objects, since it is to the encounter with and expression of the particular that art practices, most certainly my own, are frequently directed.
Resumo:
Structural Health Monitoring (SHM) schemes are useful for proper management of the performance of structures and for preventing their catastrophic failures. Vibration based SHM schemes has gained popularity during the past two decades resulting in significant research. It is hence evitable that future SHM schemes will include robust and automated vibration based damage assessment techniques (VBDAT) to detect, localize and quantify damage. In this context, the Damage Index (DI) method which is classified as non-model or output based VBDAT, has the ability to automate the damage assessment process without using a computer or numerical model along with actual measurements. Although damage assessment using DI methods have been able to achieve reasonable success for structures made of homogeneous materials such as steel, the same success level has not been reported with respect to Reinforced Concrete (RC) structures. The complexity of flexural cracks is claimed to be the main reason to hinder the applicability of existing DI methods in RC structures. Past research also indicates that use of a constant baseline throughout the damage assessment process undermines the potential of the Modal Strain Energy based Damage Index (MSEDI). To address this situation, this paper presents a novel method that has been developed as part of a comprehensive research project carried out at Queensland University of Technology, Brisbane, Australia. This novel process, referred to as the baseline updating method, continuously updates the baseline and systematically tracks both crack formation and propagation with the ability to automate the damage assessment process using output only data. The proposed method is illustrated through examples and the results demonstrate the capability of the method to achieve the desired outcomes.
Resumo:
Purpose – In structural, earthquake and aeronautical engineering and mechanical vibration, the solution of dynamic equations for a structure subjected to dynamic loading leads to a high order system of differential equations. The numerical methods are usually used for integration when either there is dealing with discrete data or there is no analytical solution for the equations. Since the numerical methods with more accuracy and stability give more accurate results in structural responses, there is a need to improve the existing methods or develop new ones. The paper aims to discuss these issues. Design/methodology/approach – In this paper, a new time integration method is proposed mathematically and numerically, which is accordingly applied to single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems. Finally, the results are compared to the existing methods such as Newmark’s method and closed form solution. Findings – It is concluded that, in the proposed method, the data variance of each set of structural responses such as displacement, velocity, or acceleration in different time steps is less than those in Newmark’s method, and the proposed method is more accurate and stable than Newmark’s method and is capable of analyzing the structure at fewer numbers of iteration or computation cycles, hence less time-consuming. Originality/value – A new mathematical and numerical time integration method is proposed for the computation of structural responses with higher accuracy and stability, lower data variance, and fewer numbers of iterations for computational cycles.
Resumo:
Underground transport tunnels are vulnerable to blast events. This paper develops and applies a fully coupled technique involving the Smooth Particle Hydrodynamics and Finite Element techniques to investigate the blast response of segmented bored tunnels. Findings indicate that several bolts failed in the longitudinal direction due to redistribution of blast loading to adjacent tunnel rings. The tunnel segments respond as arch mechanisms in the transverse direction and suffered damage mainly due to high bending stresses. The novel information from the present study will enable safer designs of buried tunnels and provide a benchmark reference for future developments in this area.
Resumo:
For wind farm optimizations with lands belonging to different owners, the traditional penalty method is highly dependent on the type of wind farm land division. The application of the traditional method can be cumbersome if the divisions are complex. To overcome this disadvantage, a new method is proposed in this paper for the first time. Unlike the penalty method which requires the addition of penalizing term when evaluating the fitness function, it is achieved through repairing the infeasible solutions before fitness evaluation. To assess the effectiveness of the proposed method on the optimization of wind farm, the optimizing results of different methods are compared for three different types of wind farm division. Different wind scenarios are also incorporated during optimization which includes (i) constant wind speed and wind direction; (ii) various wind speed and wind direction, and; (iii) the more realisticWeibull distribution. Results show that the performance of the new method varies for different land plots in the tested cases. Nevertheless, it is found that optimum or at least close to optimum results can be obtained with sequential land plot study using the new method for all cases. It is concluded that satisfactory results can be achieved using the proposed method. In addition, it has the advantage of flexibility in managing the wind farm design, which not only frees users to define the penalty parameter but without limitations on the wind farm division.
Resumo:
With the extensive use of rating systems in the web, and their significance in decision making process by users, the need for more accurate aggregation methods has emerged. The Naïve aggregation method, using the simple mean, is not adequate anymore in providing accurate reputation scores for items [6 ], hence, several researches where conducted in order to provide more accurate alternative aggregation methods. Most of the current reputation models do not consider the distribution of ratings across the different possible ratings values. In this paper, we propose a novel reputation model, which generates more accurate reputation scores for items by deploying the normal distribution over ratings. Experiments show promising results for our proposed model over state-of-the-art ones on sparse and dense datasets.
Resumo:
Not a lot is known about most mental illness. Its triggers can rarely be established and nor can its aetiological dynamics, so it is hardly surprising that the accepted treatments for most mental illnesses are really strategies to manage the most overt symptoms. But with such a dearth of knowledge, how can worthy decisions be made about psychiatric interventions, especially given time and budgetary restrictions? This paper introduces a method, extrapolated from Salutogenics; the psycho-social theory of health introduced by Antonovsky in 1987. This method takes a normative stance (that psychiatric health care is for the betterment of psychiatric patients), and applies it to any context where there is a dearth of workable knowledge. In lieu of guiding evidence, the method identifies reasonable alternatives on the fly, enabling rational decisions to be made quickly with limited resources.
Resumo:
This paper deals with a finite element modelling method for thin layer mortared masonry systems. In this method, the mortar layers including the interfaces are represented using a zero thickness interface element and the masonry units are modelled using an elasto-plastic, damaging solid element. The interface element is formulated using two regimes; i) shear-tension and ii) shearcompression. In the shear-tension regime, the failure of joint is consiedered through an eliptical failure criteria and in shear-compression it is considered through Mohr Coulomb type failure criterion. An explicit integration scheme is used in an implicit finite element framework for the formulation of the interface element. The model is calibrated with an experimental dataset from thin layer mortared masonry prism subjected to uniaxial compression, a triplet subjected to shear loads a beam subjected to flexural loads and used to predict the response of thin layer mortared masonry wallettes under orthotropic loading. The model is found to simulate the behaviour of a thin layer mortated masonry shear wall tested under pre-compression and inplane shear quite adequately. The model is shown to reproduce the failure of masonry panels under uniform biaxial state of stresses.
Resumo:
We incorporated a new Riemannian fluid registration algorithm into a general MRI analysis method called tensor-based morphometry to map the heritability of brain morphology in MR images from 23 monozygotic and 23 dizygotic twin pairs. All 92 3D scans were fluidly registered to a common template. Voxelwise Jacobian determinants were computed from the deformation fields to assess local volumetric differences across subjects. Heritability maps were computed from the intraclass correlations and their significance was assessed using voxelwise permutation tests. Lobar volume heritability was also studied using the ACE genetic model. The performance of this Riemannian algorithm was compared to a more standard fluid registration algorithm: 3D maps from both registration techniques displayed similar heritability patterns throughout the brain. Power improvements were quantified by comparing the cumulative distribution functions of the p-values generated from both competing methods. The Riemannian algorithm outperformed the standard fluid registration.