981 resultados para angular displacement measurement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disease conditions like malaria, sickle cell anemia, diabetes mellitus, cancer, etc., are known to significantly alter the deformability of certain types of cells (red blood cells, white blood cells, circulating tumor cells, etc.). To determine the cellular deformability, techniques like micropipette aspiration, atomic force microscopy, optical tweezers, quantitative phase imaging have been developed. Many of these techniques have an advantage of determining the single cell deformability with ultrahigh precision. However, the suitability of these techniques for the realization of a deformability based diagnostic tool is questionable as they are expensive and extremely slow to operate on a huge population of cells. In this paper, we propose a technique for high-throughput (800 cells/s) determination of cellular deformability on a single cell basis. This technique involves capturing the image(s) of cells in flow that have undergone deformation under the influence of shear gradient generated by the fluid flowing through the microfluidic channels. Deformability indices of these cells can be computed by performing morphological operations on these images. We demonstrate the applicability of this technique for examining the deformability index on healthy, diabetic, and sphered red blood cells. We believe that this technique has a strong role to play in the realization of a potential tool that uses deformability as one of the important criteria in disease diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct measurement of three-dimensional (3-D) forces between an atomic force microscope (AFM) probe and the sample benefits diverse applications of AFM, including force spectroscopy, nanometrology, and manipulation. This paper presents the design and evaluation of a measurement system, wherein the deflection of the AFM probe is obtained at two points to enable direct measurement of all the three components of 3-D tip-sample forces in real time. The optimal locations for measurement of deflection on the probe are derived for a conventional AFM probe. Further, a new optimal geometry is proposed for the probe that enables measurement of 3-D forces with identical sensitivity and nearly identical resolution along all three axes. Subsequently, the designed measurement system and the optimized AFM probe are both fabricated and evaluated. The evaluation demonstrates accurate measurement of tip-sample forces with minimal cross-sensitivities. Finally, the real-time measurement system is employed as part of a feedback control system to regulate the normal component of the interaction force, and to perform force-controlled scribing of a groove on the surface of polymethyl methacrylate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of device current during switching characterisation of an insulated gate bipolar transistor (IGBT) requires a current sensor with low insertion impedance and high bandwidth. This study presents an experimental procedure for evaluating the performance of a coaxial current transformer (CCT), designed for the above purpose. A prototype CCT, which can be mounted directly on a power terminal of a 1200 V/50 A half-bridge IGBT module, is characterised experimentally. The measured characteristics include insertion impedance, gain and phase of the CCT at different frequencies. The bounds of linearity within which the CCT can operate without saturation are determined theoretically, and are also verified experimentally. The experimental study on linearity of the CCT requires a high-amplitude current source. A proportional-resonant (PR) controller-based current-controlled half-bridge inverter is developed for this purpose. A systematic procedure for selection of PR controller parameters is also reported in this study. This set-up is helpful to determine the limit of linearity and also to measure the frequency response of the CCT at realistic amplitudes of current in the low-frequency range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most often the measurement of VHF from the conventional 1D H-1 NMR spectrum is severely hindered consequent to similar magnitudes of JHF and JHH couplings and the spectral multiplicity pattern. The present study reports a new 1D NMR technique based on real time spin edition, which removes all JHF and JHH while retaining only VHF of a chosen fluorine. The obtained spectrum is significantly simplified and permits straightforward determination of all possible VHF values of a chosen fluorine. Due to one dimensional nature, the method is much faster compared to 2D GET-SERF by 1-2 orders of magnitude. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using coherent light interrogating a turbid object perturbed by a focused ultrasound (US) beam, we demonstrate localized measurement of dynamics in the focal region, termed the region-of-interest (ROI), from the decay of the modulation in intensity autocorrelation of light. When the ROI contains a pipe flow, the decay is shown to be sensitive to the average flow velocity from which the mean-squared displacement (MSD) of the scattering centers in the flow can be estimated. While the MSD estimated is seen to be an order of magnitude higher than that obtainable through the usual diffusing wave spectroscopy (DWS) without the US, it is seen to be more accurate as verified by the volume flow estimated from it. It is further observed that, whereas the MSD from the localized measurement grows with time as tau(alpha) with alpha approximate to 1.65, without using the US, a is seen to be much less. Moreover, with the local measurement, this super-diffusive nature of the pipe flow is seen to persist longer, i.e., over a wider range of initial tau, than with the unassisted DWS. The reason for the super-diffusivity of flow, i.e., alpha < 2, in the ROI is the presence of a fluctuating (thermodynamically nonequilibrium) component in the dynamics induced by the US forcing. Beyond this initial range, both methods measure MSDs that rise linearly with time, indicating that ballistic and near-ballistic photons hardly capture anything beyond the background Brownian motion. (C) 2015 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, the design and development of a Fiber Bragg Grating (FBG) based displacement sensor package for submicron level displacement measurements are presented. A linear shift of 12.12 nm in Bragg wavelength of the FBG sensor is obtained for a displacement of 6 mm with a calibration factor of 0.495 mu m/pm. Field trials have also been conducted by comparing the FBG displacement sensor package against a conventional dial gauge, on a five block masonry prism specimen loaded using three-point bending technique. The responses from both the sensors are in good agreement, up to the failure of the masonry prism. Furthermore, from the real-time displacement data recorded using FBG, it is possible to detect the time at which early creaks generated inside the body of the specimen which then prorogate to the surface to develop visible surface cracks; the respective load from the load cell can be obtained from the inflection (stress release point) in the displacement curve. Thus the developed FBG displacement sensor package can be used to detect failures in structures much earlier and to provide an adequate time to exercise necessary action, thereby avoiding the possible disaster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A steel frame is designed to measure the existing prestressing force in the concrete beams and slabs when embedded inside the concrete members. The steel frame is designed to work on the principles of a vibrating wire strain gauge and in the present study is referred to as a vibrating beam strain gauge (VBSG). The existing strain in the VBSG is evaluated using both frequency data on the stretched member and static strain corresponding to a fixed static load, measured using electrical strain gauges. The evaluated strain in the VBSG corresponds to the existing stain in the concrete surrounding the prestressing strands. The crack reopening load method is used to compute the existing prestressing force in the concrete members and is then compared with the existing prestressing force obtained from the VBSG at that section. Digital image correlation based surface deformation and change in neutral axis monitored by putting electrical strain gauges across the cross section, are used to compute the crack reopening load accurately. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Reverse iontophoresis (RI) is one of the potential techniques used to monitor the concentration of various analytes in body fluids non -invasively. Transdermal extraction of potassium is investigated using RI. In the present work, the effect of potassium on stratum corneum (SC) during RI, feasibility of RI for continuous monitoring of potassium, and use of potassium as internal standard in RI, are investigated. Methods: Tape stripping experiment is carried out to find potassium concentration in SC. RI is carried out continuously for 180 min without passive diffusion and after passive diffusion for 60 min. Skin impedance measurements are done at 20 Hz and 20 kHz. Results: Potassium is found to be in the range 300-650 nmol/cm(2) on SC by tape stripping experiment. Correlation coefficient between blood potassium and extracted potassium through RI after passive diffusion (R-2 = 0.5870) is more than without passive diffusion (R-2 = 0.5117). The skin impedance measurement shows that RI has more effect on SC than superficial layer of SC during RI. Conclusion: The present investigations conclude that it is possible to monitor potassium continuously through RI and using potassium as internal standard in RI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent past, many studies have been carried out on the determination of coefficient of consolidation (c(v)) from the time (t)-deformation (d) data obtained from conventional consolidation tests. Several researchers have also proposed different curve fitting procedures for determining cv from the t-d data. It is anticipated that the cv values obtained from the t-d data may be influenced by initial and secondary compressions. Nevertheless, the pore water pressure data measured during the consolidation process will be independent of initial and secondary compressions. In this study, the conventional Asaoka (1978) method is extended to evaluate cv and end-of-primary (EOP) consolidation from the pore water pressure data measured from laboratory experiments. Laboratory experiments were carried out on the modified one-dimensional consolidation apparatus on different remoulded clay samples measuring pore water pressure during the consolidation process. The cv and EOP computed from the proposed approach have been compared with the results of the t-d data and found to be in good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of field-induced domain switching and lattice strain was carried out by in situ electric-field-dependent high-energy synchrotron x-ray diffraction on a morphotropic phase boundary (MPB) and a near-MPB rhombohedral/pseudomonoclinic composition of a high-performance piezoelectric alloy (1-x) PbTiO3-(x)BiScO3. It is demonstrated that the MPB composition showing large d(33) similar to 425 pC/N exhibits significantly reduced propensity of field-induced domain switching as compared to the non-MPB rhombohedral composition (d(33) similar to 260 pC/N). These experimental observations contradict the basic premise of the martensitic-theory-based explanation which emphasizes on enhanced domain wall motion as the primary factor for the anomalous piezoelectric response in MPB piezoelectrics. Our results favor field-induced structural transformation to be the primary mechanism contributing to the large piezoresponse of the critical MPB composition of this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite materials are very useful in structural engineering particularly in weight sensitive applications. Two different test models of the same structure made from composite materials can display very different dynamic behavior due to large uncertainties associated with composite material properties. Also, composite structures can suffer from pre-existing imperfections like delaminations, voids or cracks during fabrication. In this paper, we show that modeling and material uncertainties in composite structures can cause considerable problein in damage assessment. A recently developed C-0 shear deformable locking free refined composite plate element is employed in the numerical simulations to alleviate modeling uncertainty. A qualitative estimate of the impact of modeling uncertainty on the damage detection problem is made. A robust Fuzzy Logic System (FLS) with sliding window defuzzifier is used for delamination damage detection in composite plate type structures. The FLS is designed using variations in modal frequencies due to randomness in material properties. Probabilistic analysis is performed using Monte Carlo Simulation (MCS) on a composite plate finite element model. It is demonstrated that the FLS shows excellent robustness in delamination detection at very high levels of randomness in input data. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal properties of a micro-electromechanical system sensor were analysed by a novel digital moire method. A double-layer micro-cantilever sensor (60 mu m long, 10 mu m width and 2 mu dm thick) was prepared by focused ion beam milling. A grating with frequency of 5000 lines mm- I was etched on the cantilever. The sensor was placed into a scanning electron microscope system with a high temperature device. The observation and recording of the thermal deformation of the grating were realised in real-time as the temperature rose from room temperature to 300 degrees C at intervals of 50 degrees C. Digital moire was generated by interference of the deformed grating and a digital virtual grating. The thermal properties including strain distribution of the sensor and the linear expansion coefficient of polysilicon were accurately measured by the phase-shifted moire patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P-1 and test time tau as parameters in the temperature range 3 300 K < T < 5 600 K, pressure range 5 kPa < P1 <12 kPa and tau similar or equal to 0.4 ms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the characteristics of water wave induced liquefaction in highly saturated sand in vertical direction, a one-dimensional model of highly saturated sand to water pressure oscillation is presented based oil the two-phase continuous media theory. The development of the effective stresses and the liquefaction thickness are analyzed. It is shown that water pressure oscillating loading affects liquefaction severely and the developing rate of liquefaction increases with the decreasing of the sand strength or the increasing of the loading strength. It is shown also that there is obvious phase lag in the sand Column. If the sand permeability is non-uniform, the pore pressure and the strain rise sharply at which the smallest permeability occurs. This solution may explain Why the fracture occurs in the sand column in some conditions.