962 resultados para allele polymorphism
Resumo:
Several insulin receptor substrate-2 (IRS-2) polymorphisms have been studied in relation to insulin resistance and type 2 diabetes. To examine whether the genetic variability at the IRS-2 gene locus was associated with the degree of insulin resistance and plasma fatty acid levels in metabolic syndrome (MetS) subjects. Methods and results: Insulin sensitivity, insulin secretion, glucose effectiveness, plasma fatty acid composition and three IRS-2 tag-single nucleotide polymorphisms (SNPs) were determined in 452 MetS subjects. Among subjects with the lowest level of monounsaturated (MUFA) (below the median), the rs2289046 A/A genotype was associated with lower glucose effectiveness (p<0.038), higher fasting insulin concentrations (p<0.028) and higher HOMA IR (p<0.038) as compared to subjects carrying the minor G-allele (A/G and G/G). In contrast, among subjects with the highest level of MUFA (above the median), the A/A genotype was associated with lower fasting insulin concentrations and HOMA-IR, whereas individuals carrying the G allele and with the highest level of ω-3 polyunsaturated fatty acids (above the median) showed lower fasting insulin (p<0.01) and HOMA-IR (p<0.02) as compared with A/A subjects. Conclusion: The rs2289046 polymorphism at the IRS2 gene locus may influence insulin sensitivity by interacting with certain plasma fatty acids in MetS subjects.
Resumo:
Scope Diets low in fruits and vegetables (FV) are responsible for 2.7 million deaths from cardiovascular diseases (CVD) and certain cancers annually. Many FV and their juices contain flavonoids, some of which increase endothelial nitric oxide synthase (eNOS) activity. A single nucleotide polymorphism in the eNOS gene, where thymine (T) replaces guanine (G) at position 894 predicting substitution of glutamate for aspartate at codon 298 (Glu298Asp), has been associated with increased CVD risk due to effects on nitric oxide synthesis and subsequently vascular reactivity. Individuals can be homozygous for guanine (GG), thymine (TT) or heterozygous (GT). Methods and results We investigated the effects of acute ingestion of a FV-puree-based-drink (FVPD) on vasodilation and antioxidant status in subjects retrospectively genotyped for this polymorphism. Healthy volunteers (n = 24; 11 GG, 11 GT, 2 TT) aged 30–70 were recruited to a randomized, controlled, crossover, acute study. We showed that acute consumption of 400 mL FVPD differentially affected individuals depending on their genotype. There was a significant genotype interaction for endothelium-dependent vasodilation measured by laser Doppler imaging with iontophoresis (P < 0.05) and ex vivo low-density lipoproteins (LDL) oxidation (P = 0.002). GG subjects had increased endothelium-dependent vasodilation 180 min (P = 0.028) and reduced ex vivo LDL oxidation (P = 0.013) after 60 min after FVPD compared with control, no differences were observed in GT subjects. Conclusion eNOS Glu298Asp genotype differentially affects vasodilation and ex vivo LDL oxidation after consumption of FV in the form of a puree-based drink.
Resumo:
Genetic variants of Period 2 (PER2), a circadian clock gene, have been linked to metabolic syndrome (MetS). However, it is still unknown whether these genetic variants interact with the various types of plasma fatty acids. This study investigated whether common single nucleotide polymorphisms (SNPs) in the PER2 locus (rs934945 and rs2304672) interact with various classes of plasma fatty acids to modulate plasma lipid metabolism in 381 participants with MetS in the European LIPGENE study. Interestingly, the rs2304672 SNP interacted with plasma total SFA concentrations to affect fasting plasma TG, TG-rich lipoprotein (TRL-TG), total cholesterol, apoC-II, apoB, and apoB-48 concentrations (P-interaction < 0.001–0.046). Carriers of the minor allele (GC+GG) with the highest SFA concentration (>median) had a higher plasma TG concentration (P = 0.001) and higher TRL-TG (P < 0.001) than the CC genotype. In addition, participants carrying the minor G allele for rs2304672 SNP and with a higher SFA concentration (>median) had higher plasma concentrations of apo C-II (P < 0.001), apo C-III (P = 0.009), and apoB-48 (P = 0.028) compared with the homozygotes for the major allele (CC). In summary, the rs2304672 polymorphism in the PER2 gene locus may influence lipid metabolism by interacting with the plasma total SFA concentration in participants with MetS. The understanding of these gene-nutrient interactions could help to provide a better knowledge of the pathogenesis in MetS.
Resumo:
Our objective was to determine whether the endothelial nitric oxide synthase (eNOS) Glu298Asp polymorphism influences vascular response to raised NEFA enriched with saturated fatty acids (SFA) or long-chain (LC) n-3 polyunsaturated fatty acids (PUFA). Subjects were prospectively recruited for genotype (Glu298, n = 30 and Asp298, n = 29; balanced for age and gender) consumed SFA on two occasions, with and without the substitution of 0.07 g fat/kg body weight with LC n-3 PUFA, and with heparin infusion to elevate NEFA. Endothelial function was measured before and after NEFA elevation (240 min), with blood samples taken every 30 min. Flow-mediated dilation (FMD) decreased following SFA alone and increased following SFA+LC n-3 PUFA. There were 2-fold differences in the change in FMD response to the different fat loads between the Asp298 and Glu298 genotypes (P = 0.002) and between genders (P < 0.02). Sodium nitroprusside-induced reactivity, measured by laser Doppler imaging with iontophoresis, was significantly greater with SFA+LC n-3 PUFA in all female subjects (P < 0.001) but not in males. Elevated NEFA influences both endothelial-dependent and endothelial-independent vasodilation during the postprandial phase. Effects of fat composition appear to be genotype and gender dependent, with the greatest difference in vasodilatory response to the two fat loads seen in the Asp298 females.
Resumo:
Objective: An exaggerated postprandial triacylglycerol (TAG) response is an important determinant of cardiovascular disease risk. With increased recognition of the role of leptin in systemic macronutrient metabolism, we used a candidate gene approach to examine the impact of the common leptin receptor (LEPR) Gln223Arg polymorphism (rs1137101) on postprandial lipaemia. Methods and results: Healthy adults (n ¼ 251) underwent a sequential meal postprandial investigation, in which blood samples were taken at regular intervals after a test breakfast (t ¼ 0) and lunch (t ¼ 330 min). Fasting total- and low-density lipoprotein cholesterol were 9% lower in the ArgArg than GlnArg group (P < 0.04), whereas fasting TAG was 27% lower in the ArgArg than GlnGln group (P < 0.02). The magnitude of the postprandial TAG response was also significantly lower in the ArgArg compared with the GlnArg and GlnGln genotypes, with a 26% lower area under the curve (AUC) and incremental AUC in the ArgArg individuals (P � 0.023). Genotype*gender interactions were evident for fasting and postprandial TAG responses (P < 0.05), with the genotype effect only evident in males. Regression analysis indicated that the LEPR genotype and genotype*gender interactions were independent predictors of the TAG AUC, accounting for 6.3% of the variance. Our main findings were replicated in the independent LIPGENE-Cordoba postprandial cohort of metabolic syndrome subjects (n ¼ 75), with a 52% lower TAG AUC in the ArgArg than GlnGln male subjects (P ¼ 0.018). Conclusion: We report for the first time that the common LEPR Gln223Arg genotype is an important predictor of postprandial TAG in males. The mechanistic basis of these associations remains to be determined.
Resumo:
A technique for subtyping Camplobacter jejuni isolates has been developed by using the restriction fragment length polymorphism (Rnp) of polymerase chain reaction (PCR) products of the fluA and flaB genes. The technique was validated by using strains representing 28 serotypes of C jejuni and it may also be applied to C coli. From these strains 12 distinct RFLP profiles were observed but there was no direct relationship between the RFLP profile and the serotype. One hundred and thirty-five campylobacter isolates from 15 geographically distinct broiler flocks were investigated. All the isolates could be subtyped by using the RFLP method. Isolates from most of the flocks had a single RFLP profile despite data indicating that several serotypes were involved. Although it is possible that further restriction analysis may have demonstrated profile variations in these strains, it is more likely that antigenic variation can occur within genotypically related campylobacters. As a result, serotyping may give conflicting information for veterinary epidemiological purposes. This RFLP typing scheme appears to provide a suitable tool for the investigation of the sources and routes of transmission of campylobacters in chickens.
Resumo:
Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::str(r) null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::str(r). Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits. (C) 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The aim of this study was to convert existing faba bean (Vicia faba L.) single nucleotide polymorphism (SNP) markers from cleaved amplification polymorphic sequences and SNaPshot® formats, which are expensive and time-consuming, to the more convenient KBiosciences competitive allele‐specific PCR (KASP) assay format. Out of 80 assays designed, 75 were validated, though a core set of 67 of the most robust markers is recommended for further use. The 67 best KASP SNP assays were used across two generations of single seed descent to detect unintended outcrossing and to track and quantify loss of heterozygosity, a capability that will significantly increase the efficiency and performance of pure line production and maintenance. This same set of assays was also used to examine genetic relationships between the 67 members of the partly inbred panel, and should prove useful for line identification and diversity studies in the future.
Resumo:
Although commonplace in human disease genetics, genome-wide association (GWA) studies have only relatively recently been applied to plants. Using 32 phenotypes in the inbreeding crop barley, we report GWA mapping of 15 morphological traits across ∼500 cultivars genotyped with 1,536 SNPs. In contrast to the majority of human GWA studies, we observe high levels of linkage disequilibrium within and between chromosomes. Despite this, GWA analysis readily detected common alleles of high penetrance. To investigate the potential of combining GWA mapping with comparative analysis to resolve traits to candidate polymorphism level in unsequenced genomes, we fine-mapped a selected phenotype (anthocyanin pigmentation) within a 140-kb interval containing three genes. Of these, resequencing the putative anthocyanin pathway gene HvbHLH1 identified a deletion resulting in a premature stop codon upstream of the basic helix-loop-helix domain, which was diagnostic for lack of anthocyanin in our association and biparental mapping populations. The methodology described here is transferable to species with limited genomic resources, providing a paradigm for reducing the threshold of map-based cloning in unsequenced crops.
Resumo:
BACKGROUND: this study examined the association of -866G/A, Ala55Val, 45bpI/D, and -55C/T polymorphisms at the uncoupling protein (UCP) 3-2 loci with type 2 diabetes in Asian Indians. METHODS: a case-control study was performed among 1,406 unrelated subjects (487 with type 2 diabetes and 919 normal glucose-tolerant [NGT]), chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in Southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Haplotype frequencies were estimated using an expectation-maximization algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. RESULTS: the genotype (P = 0.00006) and the allele (P = 0.00007) frequencies of Ala55Val of the UCP2 gene showed a significant protective effect against the development of type 2 diabetes. The odds ratios (adjusted for age, sex, and body mass index) for diabetes for individuals carrying Ala/Val was 0.72, and that for individuals carrying Val/Val was 0.37. Homeostasis insulin resistance model assessment and 2-h plasma glucose were significantly lower among Val-allele carriers compared to the Ala/Ala genotype within the NGT group. The genotype (P = 0.02) and the allele (P = 0.002) frequencies of -55C/T of the UCP3 gene showed a significant protective effect against the development of diabetes. The odds ratio for diabetes for individuals carrying CT was 0.79, and that for individuals carrying TT was 0.61. The haplotype analyses further confirmed the association of Ala55Val with diabetes, where the haplotypes carrying the Ala allele were significantly higher in the cases compared to controls. CONCLUSIONS: Ala55Val and -55C/T polymorphisms at the UCP3-2 loci are associated with a significantly reduced risk of developing type 2 diabetes in Asian Indians.
Resumo:
BACKGROUND: The aim of this study was to evaluate the association of polymorphisms of the peroxisome proliferator-activated receptor gamma (PPARG) gene and peroxisome proliferators-activated receptor gamma co-activator 1 alpha (PPARGC1A) gene with diabetic nephropathy (DN) in Asian Indians. METHODS: Six common polymorphisms, 3 of the PPARG gene [-1279G/A, Pro12Ala, and His478His (C/T)] and 3 of the PPARGC1A gene (Thr394Thr, Gly482Ser, and +A2962G) were studied in 571 normal glucose-tolerant (NGT) subjects, 255 type 2 diabetic (T2D) subjects without nephropathy, and 141 DN subjects. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing. Logistic regression analysis was performed to assess the covariables associated with DN. RESULTS: Among the 6 polymorphisms examined, only the Gly482Ser of the PPARGC1A gene was significantly associated with DN. The genotype frequency of Ser/Ser genotype of the PPARGC1A gene was 8.8% (50/571) in NGT subjects, 7.8% (20/255) in T2D subjects, and 29.8% (42/141) in DN subjects. The odds ratios (ORs) for DN for the susceptible Gly/Ser and Ser/Ser genotype after adjusting for age, sex, body mass index, and duration of diabetes were 2.14 [95% confidence interval (CI), 1.23-3.72; P = 0.007] and 8.01 (95% CI, 3.89-16.47; P < 0.001), respectively. The unadjusted OR for DN for the XA genotype of the Thr394Thr polymorphism was 1.87 (95% CI, 1.20-2.92; P = 0.006) compared to T2D subjects. However, the significance was lost (P = 0.061) when adjusted for age, sex, BMI, and duration of diabetes. The +A2962G of PPARGC1A and the 3 polymorphisms of PPARG were not associated with DN. CONCLUSION: The Gly482Ser polymorphism of the PPARGC1A gene is associated with DN in Asian Indians.
Resumo:
Peroxisome proliferator-activated receptor-gamma2 (PPARG2) is a nuclear hormone receptor of ligand-dependent transcription factor involved in adipogenesis and a molecular target of the insulin sensitizers thiazolidinediones. We addressed the question of whether the 3 variants (-1279G/A, Pro12Ala, and His478His) in the PPARG2 gene are associated with type 2 diabetes mellitus and its related traits in a South Indian population. The study subjects (1000 type 2 diabetes mellitus and 1000 normal-glucose-tolerant subjects) were chosen randomly from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The variants were screened by single-stranded conformational variant, direct sequencing, and restriction fragment length polymorphism. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. The -1279G/A, Pro12Ala, and His478His variants of the PPARG2 gene were not associated with type 2 diabetes mellitus. However, the 2-loci analyses showed that, in the presence of Pro/Pro genotype of the Pro12Ala variant, the -1279G/A promoter variant showed increased susceptibility to type 2 diabetes mellitus (odds ratio, 2.092; 95% confidence interval, 1.22-3.59; P = .008), whereas in the presence of 12Ala allele, the -1279G/A showed a protective effect against type 2 diabetes mellitus (odds ratio, 0.270; 95% confidence interval, 0.15-0.49; P < .0001). The 3-loci haplotype analysis showed that the A-Ala-T (-1279G/A-Pro12Ala-His478His) haplotype was associated with a reduced risk of type 2 diabetes mellitus (P < .0001). Although our data indicate that the PPARG2 gene variants, independently, have no association with type 2 diabetes mellitus, the 2-loci genotype analysis involving -1279G/A and Pro12Ala variants and the 3-loci haplotype analysis have shown a significant association with type 2 diabetes mellitus in this South Indian population.
Resumo:
The first genome-wide association study for BMI identified a polymorphism, rs7566605, 10 kb upstream of the insulin-induced gene 2 (INSIG2) transcription start site, as the most significantly associated variant in children and adults. Subsequent studies, however, showed inconsistent association of this polymorphism with obesity traits. This polymorphism has been hypothesized to alter INSIG2 expression leading to inhibition of fatty acid and cholesterol synthesis. Hence, we investigated the association of the INSIG2 rs7566605 polymorphism with obesity- and lipid-related traits in Danish and Estonian children (930 boys and 1,073 girls) from the European Youth Heart Study (EYHS), a school-based, cross-sectional study of pre- and early pubertal children. The association between the polymorphism and obesity traits was tested using additive and recessive models adjusted for age, age-group, gender, maturity and country. Interactions were tested by including the interaction terms in the model. Despite having sufficient power (98%) to detect the previously reported effect size for association with BMI, we did not find significant effects of rs7566605 on BMI (additive, P = 0.68; recessive, P = 0.24). Accordingly, the polymorphism was not associated with overweight (P = 0.87) or obesity (P = 0.34). We also did not find association with waist circumference (WC), sum of four skinfolds, or with total cholesterol, triglycerides, low-density lipoprotein, or high-density lipoprotein. There were no gender-specific (P = 0.55), age-group-specific (P = 0.63) or country-specific (P = 0.56) effects. There was also no evidence of interaction between genotype and physical activity (P = 0.95). Despite an adequately powered study, our findings suggest that rs7566605 is not associated with obesity-related traits and lipids in the EYHS.
Resumo:
The protein encoded by the PPARGC1A gene is expressed at high levels in metabolically active tissues and is involved in the control of oxidative stress via reactive oxygen species detoxification. Several recent reports suggest that the PPARGC1A Gly482Ser (rs8192678) missense polymorphism may relate inversely with blood pressure. We used conventional meta-analysis methods to assess the association between Gly482Ser and systolic (SBP) or diastolic blood pressures (DBP) or hypertension in 13,949 individuals from 17 studies, of which 6,042 were previously unpublished observations. The studies comprised cohorts of white European, Asian, and American Indian adults, and adolescents from South America. Stratified analyses were conducted to control for population stratification. Pooled genotype frequencies were 0.47 (Gly482Gly), 0.42 (Gly482Ser), and 0.11 (Ser482Ser). We found no evidence of association between Gly482Ser and SBP [Gly482Gly: mean = 131.0 mmHg, 95% confidence interval (CI) = 130.5-131.5 mmHg; Gly482Ser mean = 133.1 mmHg, 95% CI = 132.6-133.6 mmHg; Ser482Ser: mean = 133.5 mmHg, 95% CI = 132.5-134.5 mmHg; P = 0.409] or DBP (Gly482Gly: mean = 80.3 mmHg, 95% CI = 80.0-80.6 mmHg; Gly482Ser mean = 81.5 mmHg, 95% CI = 81.2-81.8 mmHg; Ser482Ser: mean = 82.1 mmHg, 95% CI = 81.5-82.7 mmHg; P = 0.651). Contrary to previous reports, we did not observe significant effect modification by sex (SBP, P = 0.966; DBP, P = 0.715). We were also unable to confirm the previously reported association between the Ser482 allele and hypertension [odds ratio: 0.97, 95% CI = 0.87-1.08, P = 0.585]. These results were materially unchanged when analyses were focused on whites only. However, statistical evidence of gene-age interaction was apparent for DBP [Gly482Gly: 73.5 (72.8, 74.2), Gly482Ser: 77.0 (76.2, 77.8), Ser482Ser: 79.1 (77.4, 80.9), P = 4.20 x 10(-12)] and SBP [Gly482Gly: 121.4 (120.4, 122.5), Gly482Ser: 125.9 (124.6, 127.1), Ser482Ser: 129.2 (126.5, 131.9), P = 7.20 x 10(-12)] in individuals <50 yr (n = 2,511); these genetic effects were absent in those older than 50 yr (n = 5,088) (SBP, P = 0.41; DBP, P = 0.51). Our findings suggest that the PPARGC1A Ser482 allele may be associated with higher blood pressure, but this is only apparent in younger adults.
Resumo:
Adiponectin is an adipose tissue specific protein that is decreased in subjects with obesity and type 2 diabetes. The objective of the present study was to examine whether variants in the regulatory regions of the adiponectin gene contribute to type 2 diabetes in Asian Indians. The study comprised of 2,000 normal glucose tolerant (NGT) and 2,000 type 2 diabetic, unrelated subjects randomly selected from the Chennai Urban Rural Epidemiology Study (CURES), in southern India. Fasting serum adiponectin levels were measured by radioimmunoassay. We identified two proximal promoter SNPs (-11377C-->G and -11282T-->C), one intronic SNP (+10211T-->G) and one exonic SNP (+45T-->G) by SSCP and direct sequencing in a pilot study (n = 500). The +10211T-->G SNP alone was genotyped using PCR-RFLP in 4,000 study subjects. Logistic regression analysis revealed that subjects with TG genotype of +10211T-->G had significantly higher risk for diabetes compared to TT genotype [Odds ratio 1.28; 95% Confidence Interval (CI) 1.07-1.54; P = 0.008]. However, no association with diabetes was observed with GG genotype (P = 0.22). Stratification of the study subjects based on BMI showed that the odds ratio for obesity for the TG genotype was 1.53 (95%CI 1.3-1.8; P < 10(-7)) and that for GG genotype, 2.10 (95% CI 1.3-3.3; P = 0.002). Among NGT subjects, the mean serum adiponectin levels were significantly lower among the GG (P = 0.007) and TG (P = 0.001) genotypes compared to TT genotype. Among Asian Indians there is an association of +10211T-->G polymorphism in the first intron of the adiponectin gene with type 2 diabetes, obesity and hypoadiponectinemia.