963 resultados para aircraft coating, paint degradation, fourier transform infrared, profluorescent nitroxide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state protonated and N,O-deuterated Fourier transform infrared (IR) and Raman scattering spectra together with the protonated and deuterated Raman spectra in aqueous solution of the cyclic di-amino acid peptide cyclo(L-Asp-L-Asp) are reported. Vibrational band assignments have been made on the basis of comparisons with previously cited literature values for diketopiperazine (DKP) derivatives and normal coordinate analyses for both the protonated and deuterated species based upon DFT calculations at the B3-LYP/cc-pVDZ level of the isolated molecule in the gas phase. The calculated minimum energy structure for cyclo(L-Asp-L-Asp), assuming C-2 symmetry, predicts a boat conformation for the DKP ring with both the two L-aspartyl side chains being folded slightly above the ring. The C=O stretching vibrations have been assigned for the side-chain carboxylic acid group (e.g. at 1693 and 1670 cm(-1) in the Raman spectrum) and the cis amide I bands (e.g. at 1660 cm(-1) in the Raman spectrum). The presence of two bands for the carboxylic acid C=O stretching modes in the solid-state Raman spectrum can be accounted for by factor group splitting of the two nonequivalent molecules in a crystallographic unit cell. The cis amide II band is observed at 1489 cm(-1) in the solid-state Raman spectrum, which is in agreement with results for cyclic di-amino acid peptide molecules examined previously in the solid state, where the DKP ring adopts a boat conformation. Additionally, it also appears that as the molecular mass of the substituent on the C-alpha atom is increased, the amide II band wavenumber decreases to below 1500 cm(-1); this may be a consequence of increased strain on the DKP ring. The cis amide II Raman band is characterized by its relatively small deuterium shift (29 cm(-1)), which indicates that this band has a smaller N-H bending contribution than the trans amide II vibrational band observed for linear peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B3-LYP/cc-pVDZ calculations of the gas-phase structure and vibrational spectra of the isolated molecule cyclo(L-Ser-L-Ser), a cyclic di-amino acid peptide (CDAP), were carried out by assuming C-2 symmetry. It is predicted that the minimum-energy structure is a boat conformation for the diketopiperazine (DKP) ring with both L-Beryl side chains being folded slightly above the ring. An additional structure of higher energy (15.16 kJ mol(-1)) has been calculated for a DKP ring with a planar geometry, although in this case two fundamental vibrations have been calculated with imaginary wavenumbers. The reported X-ray crystallographic structure of cyclo(L-Ser-L-Ser), shows that the DKP ring displays a near-planar conformation, with both the two L-Beryl side chains being folded above the ring. It is hypothesized that the crystal packing forces constrain the DKP ring in a planar conformation and it is probable that the lower energy boat conformation may prevail in the aqueous environment. Raman scattering and Fourier-transform infrared (FT-IR) spectra of solid state and aqueous solution samples of cyclo(L-Ser-L-Ser) are reported and discussed. Vibrational band assignments have been made on the basis of comparisons with the calculated vibrational spectra and band wavenumber shifts upon deuteration of labile protons. The experimental Raman and IR results for solid-state samples show characteristic amide I vibrations which are split (Raman:1661 and 1687 cm(-1), IR:1666 and 1680 cm(-1)), possibly due to interactions between molecules in a crystallographic unit cell. The cis amide I band is differentiated by its deuterium shift of ~ 30 cm(-1), which is larger than that previously reported for trans amide I deuterium shifts. A cis amide II mode has been assigned to a Raman band located at 1520 cm(-1). The occurrence of this cis amide II mode at a wavenumber above 1500 cm(-1) concurs with results of previously examined CDAP molecules with low molecular weight substituents on the C-alpha atoms, and is also indicative of a relatively unstrained DKP ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developing appropriate treatments for easel paintings can be complex, as many works are composed of various materials that respond in different ways. When selecting a filling material for these artworks, several properties are investigated including: the need for the infill to react to environmental conditions in a similar manner as the original material; the need for the infill to have good handling properties, adhesion to the original support, and cohesion within the filling material; the ability for the infill to withstand the stress of the surrounding material and; be as flexible as the original material to not cause further damage. Also, changes in colour or mechanical properties should not occur as part of the ageing process. Studies are needed on acrylic-based materials used as infills in conservation treatments. This research examines some of the chemical, physical, and optical changes of eleven filling materials before and after ageing, with the aim to evaluate the overall appropriateness of these materials as infills for easel paintings. The materials examined were three rabbit skin glue (RSG) gessoes, and seven commercially prepared acrylic materials, all easily acquired in North America. Chemical analysis was carried out with Fourier transform infrared (FTIR) spectroscopy and X-ray fluorescence (XRF), pyrolysis gas chromatography-mass spectroscopy (Py-GC/MS), and differential scanning calorimetry (DSC). Overall the compositions of the various materials examined were found to be in agreement with the available literature and previous research. This study also examined characteristics of these materials not described in previous works and, additionally, presented the compositions and behaviour of several commonly used materials with little literature description. After application of an ageing regimen, most naturally aged and artificially aged samples displayed small changes in gloss, colour, thickness, and diffusive behaviour; however, to evaluate these materials fully mechanical testing and environmental studies should be carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feasibility of using diatomite for the removal of the problematic reactive dyes as well as basic dyes from textile wastewater was investigated. Methylene blue, Cibacron reactive black and reactive yellow dyes were considered. Physical characteristics of diatomite such as pH(solution), pH(ZPC), surface area, Fourier transform infrared, and scanning electron microscopy were investigated. The surface area of diatomite was found to be 27.80 m(2) g(-1) and the pH(ZPC) occurred around pH of 5.4. The results indicated that the surface charge of diatomite decreased as the pH of the solution increased with the maximum methylene blue removal from aqueous solution occurring at basic pH of around (1011). Adsorption isotherms of diatomite with methylene blue, hydrolysed reactive black and yellow dyes were constructed at different pH values, initial dye concentrations and particle sizes. The experimental results were fitted to the Langmuir, Freundlich, and Henry models. The study indicated that electrostatic interactions play an important role in the adsorption of dyes onto diatomite. A model of the adsorption mechanism of methylene blue onto diatomite is proposed. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the poly(ethylene glycol) (PEG) plasticizer content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) (PMVE/MA) was investigated with tensile mechanical testing, thermal analysis, and attenuated total reflectance/Fourier transform infrared spectroscopy. Unplasticized films and those containing high copolymer contents were very difficult to handle and proved difficult to test. PEG with a molecular weight of 200 Da was the most efficient plasticizer. However, films cast from aqueous blends containing 10% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000 when the copolymer/plasticizer ratio was 4 : 3 and those cast from aqueous blends containing 15% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000 when the copolymer/plasticizer ratio was 2 : 1 possessed mechanical properties most closely mimicking those of a formulation we have used clinically in photodynamic therapy. Importantly, we found previously that films cast from aqueous blends containing 10% (w/w) PMVE/MA performed rather poorly in the clinical setting, where uptake of moisture from patients' skin led to reversion of the formulation to a thick gel. Consequently, we are now investigating films cast from aqueous blends containing 15% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000, where the copolymer/plasticizer ratio is 2 : 1, as possible Food and Drug Administration approved replacements for our current formulation, which must currently be used only on a named patient basis as its plasticizer, tripropylene glycol methyl ether, is not currently available in pharmaceutical grade

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigations into structural changes which occur during adsorbent modification and the adsorption mechanisms are essential for an effective design of adsorption systems. Manganese oxides were impregnated onto diatomite to form the type known as delta-birnessite. Initial investigations established the effectiveness of manganese oxides-modified diatomite (MOMD) to remove basic and reactive dyes from aqueous solution. The adsorption capacity of MOMD for methylene blue (MB), hydrolysed reactive black (RB) and hydrolysed reactive yellow (RY) was 320, 419, and 204 mg/g, respectively. Various analytical techniques were used to characterise the structure and the mechanisms of the dye adsorption process onto MOMD such as Fourier transform infrared (FTIR), X-ray diffraction (XRD) and atomic absorption spectrometry (A.A.). A small shift to higher values of the cl-spacing of dye/MOMD was observed indicating that a small amount of the dye molecules were intercalated in the MOMD structure and other molecules were adsorbed on the external surface of MOMD. Two mechanisms of dye adsorption onto MOMD were proposed; intercalation of the dye in the octahedral layers and adsorption of the dye on the MOMD external surface. Moreover, the results demonstrated that the MOMD structure was changed upon insertion of MB and RY with an obvious decrease in the intensity of the second main peak of the MOMD X-ray pattern. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method using a combination of ball milling, acid hydrolysis, and ultrasound was developed to obtain a high yield of cellulose nanofibers from flax fibers and microcrystalline cellulose (MCC). Poly(vinyl alcohol) (PVA) nanocomposites were prepared with these additives by a solution-casting technique. The cellulose nanofibers and nanocomposite films that were produced were characterized with Fourier transform infrared spectrometry, X- ray diffraction, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. Nanofibers derived from MCC were on average approximately 8 nm in diameter and 111 nm in length. The diameter of the cellulose nanofibers produced from flax fibers was approximately 9 nm, and the length was 141 nm. A significant enhancement of the thermal and mechanical properties was achieved with a small addition of cellulose nanofibers to the polymer matrix. Interestingly, the flax nanofibers had the same reinforcing effects as MCC nanofibers in the matrix. Dynamic mechanical analysis results indicated that the use of cellulose nanofibers (acid hydrolysis) induced a mechanical percolation phenomenon leading to outstanding and unusual mechanical properties through the formation of a rigid filler network in the PVA matrix. X-ray diffraction showed that there was no significant change in the crystallinity of the PVA matrix with the incorporation of cellulose nanofibers. © 2009 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A potential usefulness of raw date pits as an inexpensive solid adsorbent for methylene blue (MB), copper ion (Cu2+), and cadmium ion (Cd2+) has been demonstrated in this work. This work was conducted to provide fundamental information from the study of equilibrium adsorption isotherms and to investigate the adsorption mechanisms in the adsorption of MB, Cu2+, and Cd2+ onto raw date pits. The fit of two models, namely Langmuir and Freundlich models, to experimental data obtained from the adsorption isotherms was checked. The adsorption capacities of the raw date pits towards MB and both Cu2+ and Cd2+ ions obtained from Langmuir and Freundlich models were found to be 277.8, 35.9, and 39.5 mg g(-1), respectively. Surface functional groups on the raw date pits surface substantially influence the adsorption characteristics of MB, Cu2+, and Cd2+ onto the raw date pits. The Fourier transform infrared spectroscopy (FTIR) studies show clear differences in both absorbances and shapes of the bands and in their locations before and after solute adsorption. Two mechanisms were observed for MB adsorption, hydrogen bonding and electrostatic attraction, while other mechanisms were observed for Cu2+ and Cd2+. For Cu2+, binding two cellulose/lignin units together is the predominant mechanism. For Cd2+. the predominant mechanism is by binding itself using two hydroxyl groups in the cellulose/lignin unit. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the CO peak from 1708 to 1731 cm-1, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer–water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the Mw of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid molecular dispersions of bicalutamide (BL) and polyvinylpyrrolidone (PVP) were prepared by hot melt extrusion technology at drug-to-polymer ratios of 1:10, 2:10, and 3:10 (w/w). The solid-state properties of BL, physical mixtures of BL/PVP, and hot melt extrudates were characterized using differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), Raman, and Fourier transform infrared (FTIR) spectroscopy. Drug dissolution studies were subsequently conducted on hot melt extruded solid dispersions and physical mixtures. All hot melt extrudates had a single Tg between theTg of amorphous BL and PVP indicating miscibility of BL with PVP and the formation of solid molecular dispersions. PXRD con?rmed the presence of the amorphous form of BL within the extrudates. Conversely, PXRD patterns recorded for physical mixtures showed sharp bands characteristic of crystalline BL, whereas DSC traces had a distinct endotherm at 1968C corresponding to melting of crystalline BL. Further investigations using DSC con?rmed solid-state plasticization of PVP by amorphous BL and hence antiplasticization of amorphous BL by PVP. Experimentally observed Tg values of physical mixtures were shown to be signi?cantly higher than those calculated using the Gordon–Taylor equation suggesting the formation of strong intermolecular interactions between BL and PVP. FTIR and Raman spectroscopy were used to investigate these interactions and strongly suggested the presence of secondary interaction between PVP and BL within the hot melt extrudates. The drug dissolution properties of hot melt extrudates were enhanced signi?cantly in comparison to crystalline BL and physical mixtures. Moreover, the rate and extent of BL release were highly dependent on the amount of PVP present within the extrudate. Storage of the extrudates con?rmed the stability of amorphous BL for up to 12 months at 208C, 40% RH whereas stability was reduced under highly humid conditions (208C, 65% RH). Interestingly, BL recrystallization after storage under these conditions had no effect on the dissolution properties of the extrudates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macroporosity(>100µm) in bone void fillers is a known prerequisite for tissue regeneration, but recent literature has highlighted the added benefit of microporosity(0.5 - 10µm). The aim of this study was to compare the in vitro performances of a novel interconnective microporous hydroxyapatite (HA) derived from red algae to four clinically available macroporous calcium phosphate (CaP) bone void fillers. The use of algae as a starting material for this novel void filler overcomes the issue of sustainability, which overshadows continued use of scleractinian coral in the production of some commercially available materials, namely Pro-OsteonTM and Bio-Coral®. This study investigated the physicochemical properties of each bone voidfiller material using x-ray diffraction, fourier transform infrared spectroscopy, inductive coupled plasma, and nitrogen gas absorption and mercury porosimetry. Biochemical analysis, XTT, picogreen and alkaline phosphatase assays were used to evaluate the biological performances of the five materials. Results showed that algal HA is non-toxic to human foetal osteoblast (hFOB) cells and supports cell proliferation and differentiation. The preliminary in vitro testing of microporous algal-HA suggests that it is comparable to the four clinically approved macroporous bone void fillers tested. The results demonstrate that microporous algal HA has good potential for use in vivo and in new tissue engineered strategies for hard tissue repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the C{double bond, long}O peak from 1708 to 1731 cm, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer-water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the M of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A facile sonochemical method has been developed to prepare very small zinc sulfide nanoparticles (ZnS NPs) of extremely small size about 1. nm in diameter using a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the NPs were determined in depth with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) analysis, and UV-vis absorption spectroscopy. The energy band gap measurements of ZnS NPs were calculated by UV-vis absorption spectroscopy. One of the interesting features of the present work is that the wide band gap semiconductor ZnS nanocrystals were prepared which are used in the fabrication of photonic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collagen is widely used as a biomedical material, and its importance is likely to grow as research and understanding progresses in this field. As a biomedical material, ensuring the sterility of collagen before use as, or incorporation into, a medical device is paramount. However, common sterilisation techniques can induce changes in the physical structure and protein chemistry of collagen, potentially affecting the performance. In this preliminary study, the influence of autoclaving, gamma irradiation and ethylene oxide gas sterilisation on the denaturation temperature and helical content of the collagen was evaluated using differential scanning calorimetry and Fourier transform infrared spectroscopy. Early results indicate that all sterilisation techniques affect collagen properties but suggest that the least damaging of the techniques investigated was y irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content(similar to 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (similar to 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range similar to 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N-2 (77 K) and CO2 (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) <= 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.