884 resultados para agro-ecology
Resumo:
Programa de oceanografía
Resumo:
Phenol and cresols represent a good example of primary chemical building blocks of which 2.8 million tons are currently produced in Europe each year. Currently, these primary phenolic building blocks are produced by refining processes from fossil hydrocarbons: 5% of the world-wide production comes from coal (which contains 0.2% of phenols) through the distillation of the tar residue after the production of coke, while 95% of current world production of phenol is produced by the distillation and cracking of crude oil. In nature phenolic compounds are present in terrestrial higher plants and ferns in several different chemical structures while they are essentially absent in lower organisms and in animals. Biomass (which contain 3-8% of phenols) represents a substantial source of secondary chemical building blocks presently underexploited. These phenolic derivatives are currently used in tens thousand of tons to produce high cost products such as food additives and flavours (i.e. vanillin), fine chemicals (i.e. non-steroidal anti-inflammatory drugs such as ibuprofen or flurbiprofen) and polymers (i.e. poly p-vinylphenol, a photosensitive polymer for electronic and optoelectronic applications). European agrifood waste represents a low cost abundant raw material (250 millions tons per year) which does not subtract land use and processing resources from necessary sustainable food production. The class of phenolic compounds is essentially constituted by simple phenols, phenolic acids, hydroxycinnamic acid derivatives, flavonoids and lignans. As in the case of coke production, the removal of the phenolic contents from biomass upgrades also the residual biomass. Focusing on the phenolic component of agrifood wastes, huge processing and marketing opportunities open since phenols are used as chemical intermediates for a large number of applications, ranging from pharmaceuticals, agricultural chemicals, food ingredients etc. Following this approach we developed a biorefining process to recover the phenolic fraction of wheat bran based on enzymatic commercial biocatalysts in completely water based process, and polymeric resins with the aim of substituting secondary chemical building blocks with the same compounds naturally present in biomass. We characterized several industrial enzymatic product for their ability to hydrolize the different molecular features that are present in wheat bran cell walls structures, focusing on the hydrolysis of polysaccharidic chains and phenolics cross links. This industrial biocatalysts were tested on wheat bran and the optimized process allowed to liquefy up to the 60 % of the treated matter. The enzymatic treatment was also able to solubilise up to the 30 % of the alkali extractable ferulic acid. An extraction process of the phenolic fraction of the hydrolyzed wheat bran based on an adsorbtion/desorption process on styrene-polyvinyl benzene weak cation-exchange resin Amberlite IRA 95 was developed. The efficiency of the resin was tested on different model system containing ferulic acid and the adsorption and desorption working parameters optimized for the crude enzymatic hydrolyzed wheat bran. The extraction process developed had an overall yield of the 82% and allowed to obtain concentrated extracts containing up to 3000 ppm of ferulic acid. The crude enzymatic hydrolyzed wheat bran and the concentrated extract were finally used as substrate in a bioconversion process of ferulic acid into vanillin through resting cells fermentation. The bioconversion process had a yields in vanillin of 60-70% within 5-6 hours of fermentation. Our findings are the first step on the way to demonstrating the economical feasibility for the recovery of biophenols from agrifood wastes through a whole crop approach in a sustainable biorefining process.
Resumo:
L’obiettivo del lavoro svolto nell’ambito del ciclo di dottorato è stato quello dell’applicazione della metodologia di analisi degli scenari, nell’ottica dello studio e applicazione di un metodo di analisi integrato e multidisciplinare che consenta individuare strategie di sviluppo sostenibile in relazione alla questione indagata. Lo studio sviluppato nel corso del dottorato è stato impostato su presupposti forniti dalla Regione Toscana (in entrambi i casi di studio trattati), che ha finanziato, attraverso la sua Agenzia Regionale per lo Sviluppo e Innovazione in ambito Agricolo (ARSIA), due Progetti di ricerca volti all’individuazione di strategie di sviluppo sostenibile concernenti due tematiche di particolare interesse in ambito regionale: lo sviluppo di coltivazioni non-food (biocarburanti, biomasse da energia, biopolimeri, biolubrificanti, fibre vegetali, coloranti naturali, fitofarmaci di origine vegetale) e la valutazione della possibilità di coesistenza tra colture convenzionali (non Geneticamente Modificate) e colture GM, in relazione alla Raccomandazione della Commissione 2003/556/CE che afferma che deve essere garantita la coesistenza tra colture transgeniche, convenzionali e biologiche, ovvero che devono essere presenti le condizioni per cui ciascun metodo di coltivazione possa poter essere adottato e praticato in UE. La sostenibilità delle situazioni studiate è stata valutata fornendo informazioni non solo per la situazioni attuali, ma anche per possibili evoluzioni future, così come richiesto dai principi dello sviluppo sostenibile. A tal proposito, occorre applicare metodologie di analisi che consentano di poter identificare obiettivi strategici in funzione dei cambiamenti che potrebbero essere registrati, in corrispondenza dell’evolversi delle diverse situazioni nel tempo. La metodologia di analisi in grado di soddisfare questi requisiti può essere identificata nell’analisi di scenario (scenario analysis), che si configura come uno strumento di analisi strategica in grado di riassumere numerose informazioni e dati riferiti agli attori, agli obiettivi, agli strumenti, alle cause ed agli effetti indotti da un cambiamento che potrebbe essere provocato da uno o più fattori contemplati nel corso dell’analisi. Questo metodo di analisi rappresenta un’importante strumento di ausilio alla definizione di politiche e strategie, che si rende particolarmente utile nel campo della public choice, come dimostrato dalle applicazioni presentate nel corso del lavoro.
Resumo:
This study fits into the context of activities aim at waste bioremediation and valorization through the production of energy according to principles of environmental sustainability. The experimental work was carried out at the laboratories of the Department of Civil Engineering, Environmental and Materials (DICAM) of the Faculty of Engineering. The main objective was to enhance the treatment of high organic loading waste, such as manure and cheese whey, through advanced anaerobic digestion systems in order to obtain biogas rich in methane. On the basis of the premise that the environmental conditions pertaining in most anaerobic wastewater digesters are not optimal for both fermentative and methanogenic microorganisms, the research was particularly focused on the implementation of two-phase anaerobic digesters. In fact a two-phase process permits selection and enrichment of different bacteria in each digester by independently controlling the digester operating conditions. Thus, the first phase (acidogenesis) can be operated to optimize acidogenic growth and the second phase (methanogenesis) to optimize methanogenic growth. (Ince O. , 1998). Before reactors’ set up, , some lab scale experiments were carried out to identify the best manure and whey ratio and the best conditions of temperature, pH, hydraulic retention time of acidogenesis an methanogenic phases.
Resumo:
Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.
Resumo:
This research focuses on reproductive biology and pollination ecology of entomophilous angiosperms, with particular concern to reproductive success in small and isolated populations of species that occur at their distribution limits or are endemic. I considered three perennial herbs as model species: Primula apennina Widmer, Dictamnus albus L. and Convolvulus lineatus L. I carried out field work on natural populations and performed laboratory analyses on specific critical aspects (resource allocation, pollen viability, stigmatic receptivity, physiological self-incompatibility, seed viability), through which I analysed different aspects related to plant fitness, such as production of viable seed, demographic structure of populations, type and efficiency of plant-pollinator system, and limiting factors.
Resumo:
Nel corso del tirocinio di tesi si sono studiate nuove metodologie per la produzione di enzimi idrolitici per matrici lignocellulosiche vegetali di scarto. In primis è stato valutato un nuovo metodo di produzione enzimatica utilizzando il fungo basidiomicete Pleurotus ostreatus all’interno di un fermentatore in stato solido (SSF) movimentando periodicamente il substrato mediante un'estrusione meccanica e confrontando i risultati con esperimenti analoghi ma privi di estrusione. In seguito si è valutata l’attività enzimatica prodotta dal fungo Agaricus bisporus (il comune Champignons) cresciuto tramite una fermentazione in stato solido priva di qualsiasi movimentazione. Infine gli estratti enzimatici ricavati dalle prove precedenti sono stati utilizzati allo scopo di idrolizzare matrici vegetali di scarto provenienti dall’industria cerealicola e viti-vinicola. I risultati del lavoro risultano promettenti e si osserva come sia gli estratti ricavati da fermentazioni su stato solido dinamiche (con Pleurotus) che quelle su stato solido statiche (con Agaricus) sono in grado di favorire l’idrolisi e la degradazione delle matrici vegetali favorendo la fuoriuscita di componenti di interesse come zuccheri riducenti e polifenoli.
Resumo:
This PhD thesis reports on car fluff management, recycling and recovery. Car fluff is the residual waste produced by car recycling operations, particularly from hulk shredding. Car fluff is known also as Automotive Shredder Residue (ASR) and it is made of plastics, rubbers, textiles, metals and other materials, and it is very heterogeneous both in its composition and in its particle size. In fact, fines may amount to about 50%, making difficult to sort out recyclable materials or exploit ASR heat value by energy recovery. This 3 years long study started with the definition of the Italian End-of-Life Vehicles (ELVs) recycling state of the art. A national recycling trial revealed Italian recycling rate to be around 81% in 2008, while European Community recycling target are set to 85% by 2015. Consequently, according to Industrial Ecology framework, a life cycle assessment (LCA) has been conducted revealing that sorting and recycling polymers and metals contained in car fluff, followed by recovering residual energy, is the route which has the best environmental perspective. This results led the second year investigation that involved pyrolysis trials on pretreated ASR fractions aimed at investigating which processes could be suitable for an industrial scale ASR treatment plant. Sieving followed by floatation reported good result in thermochemical conversion of polymers with polyolefins giving excellent conversion rate. This factor triggered ecodesign considerations. Ecodesign, together with LCA, is one of the Industrial Ecology pillars and it consists of design for recycling and design for disassembly, both aimed at the improvement of car components dismantling speed and the substitution of non recyclable material. Finally, during the last year, innovative plants and technologies for metals recovery from car fluff have been visited and tested worldwide in order to design a new car fluff treatment plant aimed at ASR energy and material recovery.