795 resultados para adipose tissue metabolism
Resumo:
Zinc-a2-glycoprotein (ZAG) is an adipokine with the potential as a therapeutic agent in the treatment of obesity and type 2 diabetes. In this study we show that human ZAG, which is a 41-kDa protein, when administered to ob/ob mice at 50 µg/d-1 orally in the drinking water produced a progressive loss of body weight (5 g after 8 d treatment), together with a 0.5 C increase in rectal temperature and a 40% reduction in urinary excretion of glucose. There was also a 33% reduction in the area under the curve during an oral glucose tolerance test and an increased sensitivity to insulin. These results were similar to those after iv administration of ZAG. However, tryptic digestion was shown to inactivate ZAG. There was no evidence of human ZAG in the serum but a 2-fold elevation of murine ZAG, which was also observed in target tissues such as white adipose tissue. To determine whether the effect was due to interaction of the human ZAG with the ß-adrenergic (ß-AR) in the gastrointestinal tract before digestion, ZAG was coadministered to ob/ob mice together with propanolol (40 mg/kg-1), a nonspecific ß-AR antagonist. The effect of ZAG on body weight, rectal temperature, urinary glucose excretion, improvement in glucose disposal, and increased insulin sensitivity were attenuated by propanolol, as was the increase in murine ZAG in the serum. These results suggest that oral administration of ZAG increases serum levels through interaction with a ß-AR in the upper gastrointestinal tract, and gene expression studies showed this to be in the esophagus.
Resumo:
Beta-cell failure coupled with insulin resistance is a key factor in the development of type 2 diabetes. Changes in circulating levels of adipokines, factors released from adipose tissue, form a significant link between excessive adiposity in obesity and both aforementioned factors. In this review we consider the published evidence for the role of individual adipokines on the function, proliferation, death and failure of beta-cells, focusing on those reported to have the most significant effects (leptin, adiponectin, TNFa, resistin, visfatin, DPP-IV and apelin). It is apparent that some adipokines have beneficial effects whereas others have detrimental properties; the overall contribution to beta-cell failure of changed concentrations of adipokines in the blood of obese pre-diabetic subjects will be highly dependent on the balance between these effects and the interactions between the adipokines which act on the beta-cell via a number of intersecting intracellular signalling pathways. We emphasise the importance, and comparative dearth, of studies into the combined effects of adipokines on beta-cells.
Resumo:
Obesity, and especially visceral adiposity, escalates the development of insulin resistance and type 2 diabetes. Excess adipose tissue contributes to a chronic increase in circulating fatty acids reducing the usage of glucose as a source of cellular energy. Excess fatty acids also result in increased deposition of fat in muscle and liver, and increased metabolites such as diacylglycerol and ceramide which activate isoforms of protein kinase C that impede cellular insulin signalling. Chronically raised lipid levels also impair islet beta cell function, acting in conjuction with insulin resistance to aggravate hyperglycaemia. The detrimental effects of several adipokines such as TNF, IL6 and RBP4, which are produced in excess by an increased adipose mass, and reduced production of adiponectin are further mechanisms through which obesity potentiates the development of type 2 diabetes. © 2011 The Author(s).
Resumo:
The ageing process is strongly influenced by nutrient balance, such that modest calorie restriction (CR) extends lifespan in mammals. Irisin, a newly described hormone released from skeletal muscles after exercise, may induce CR-like effects by increasing adipose tissue energy expenditure. Using telomere length as a marker of ageing, this study investigates associations between body composition, plasma irisin levels and peripheral blood mononuclear cell telomere length in healthy, non-obese individuals. Segmental body composition (by bioimpedance), telomere length and plasma irisin levels were assessed in 81 healthy individuals (age 43∈±∈15.8 years, BMI 24.3∈±∈2.9 kg/m2). Data showed significant correlations between log-transformed relative telomere length and the following: age (p∈<∈0.001), height (p∈=∈0.045), total body fat percentage (p∈=∈0.031), abdominal fat percentage (p∈=∈0.038) , visceral fat level (p∈<∈0.001), plasma leptin (p∈=∈0.029) and plasma irisin (p∈=∈0.011), respectively. Multiple regression analysis using backward elimination revealed that relative telomere length can be predicted by age (b∈=∈-0.00735, p∈=∈0.001) and plasma irisin levels (b∈=∈0.04527, p∈=∈0.021). These data support the view that irisin may have a role in the modulation of both energy balance and the ageing process. © 2014 The Author(s).
Resumo:
Loss of adipose tissue in cancer cachexia has been associated with tumour production of a lipid-mobilizing factor (LMF) which has been shown to be homologous with the plasma protein zinc-a2-glycoprotein (ZAG). The aim of this study was to compare the ability of human ZAG with LMF to stimulate lipolysis in vitro and induce loss of body fat in vivo, and to determine the mechanisms involved. ZAG was purified from human plasma using a combination of Q Sepharose and Superdex 75 chromatography, and was shown to stimulate glycerol release from isolated murine epididymal adipocytes in a dose-dependent manner. The effect was enhanced by the cyclic AMP phosphodiesterase inhibitor Ro20-1724, and attenuated by freeze/thawing and the specific ß3-adrenoreceptor antagonist SR59230A. In vivo ZAG caused highly significant, time-dependent, decreases in body weight without a reduction in food and water intake. Body composition analysis showed that loss of body weight could be attributed entirely to the loss of body fat. Loss of adipose tissue may have been due to the lipolytic effect of ZAG coupled with an increase in energy expenditure, since there was a dose-dependent increase in expression of uncoupling protein-1 (UCP-1) in brown adipose tissue. These results suggest that ZAG may be effective in the treatment of obesity.
Resumo:
Causative factors: Nutritional supplementation or pharmacological manipulation of appetite are unable to control the muscle atrophy seen in cancer cachexia. This suggests that tumour and/or host factors might be responsible for the depression in protein synthesis and the increase in protein degradation. An increased expression of the ubiquitin-proteasome proteolytic pathway is responsible for the increased degradation of myofibrillar proteins in skeletal muscle, and this may be due to tumour factors, such as proteolysis-inducing factor (PIF), or host factors such as tumour necrosis factor-α (TNF-α). In humans loss of adipose tissue is due to an increase in lipolysis rather than a decrease in synthesis, and this may be due to tumour factors such as lipid-mobilising factor (LMF) or TNF-α, both of which can increase cyclic AMP in adipocytes, leading to activation of hormone-sensitive lipase (HSL). Levels of mRNA for HSL are elevated twofold in adipose tissue of cancer patients, while there are no changes in lipoprotein lipase (LPL), involved in extraction of fatty acids from plasma lipoproteins for storage. Treatment for cachexia: This has concentrated on increasing food intake, although that alone is unable to reverse the metabolic changes. Agents interfering with TNF-α have not been very successful to date, although more research is required in that area. The only agent tested clinically that is able to interfere with the action of PIF is eicosapentaenoic acid (EPA). EPA attenuates protein degradation in skeletal muscle by preventing the increased expression of the ubiquitin-proteasome pathway, but has no effect on protein synthesis. When used alone EPA prevents further wasting in cachectic patients, and, when it is combined with an energy- and protein-dense nutritional supplement, weight gain is seen, which is totally lean body mass. These results suggest that mechanistic studies into the causes of cancer cachexia will allow appropriate therapeutic intervention.
Resumo:
Purpose: Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Methods: Female MF-1 mice were fed a normal protein (NP, 18 % casein) or a protein-restricted (PR, 9 % casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45 % kcal fat) or standard chow (C, 7 % kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). Results: PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P <0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P <0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P <0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring. Conclusions: These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
The adipokine resistin is known to induce insulin resistance in rodent tissues. Increases in adipose tissue mass are known to have a negative effect on pancreatic beta-cell function, although the mechanisms are poorly understood. This study investigated the effects of resistin on insulin secretion, insulin receptor expression and cell viability in pancreatic beta-cells. BTC-6 or BRIN-BD11 cells were treated for 24h with resistin, and insulin receptor expression, insulin secretion and cell viability were measured. Incubation with 40ng/ml resistin caused significant decreases in insulin receptor mRNA and protein expression, but did not affect insulin secretion. At low concentrations, resistin caused significant increases in cell viability. These data implicate resistin as a factor that may regulate beta-cell function/viability, and suggests a potential mechanism by which increased adiposity causes beta-cell dysfunction.
Resumo:
Sibutramine is a satiety-inducing serotonin-noradrenaline reuptake inhibitor that acts predominantly via its primary and secondary metabolites. This study investigates the possibility that sibutramine and/or its metabolites could act directly on white adipose tissue to increase lipolysis. Adipocytes were isolated by a collagenase digestion procedure from homozygous lean (+/+) and obese-diabetic ob/ob mice, and from lean nondiabetic human subjects. The lipolytic activity of adipocyte preparations was measured by the determination of glycerol release over a 2-hour incubation period. The primary amine metabolite of sibutramine M2, caused a concentration-dependent stimulation of glycerol release by murine lean and obese adipocytes (maximum increase by 157 ± 22 and 245 ± 1696, respectively, p < 0.05). Neither sibutramine nor its secondary amine metabolite M1 had any effect on lipolytic activity. Preliminary studies indicated that M2-induced lipolysis was mediated via a beta-adrenergic action. The non-selective beta-adrenoceptor antagonist propranolol (10-6M) strongly inhibited M2-stimulated lipolysis in lean and obese murine adipocytes. M2 similarly increased lipolysis by isolated human omental and subcutaneous adipocytes (maximum increase by 194 ± 33 and 136 ± 4%, respectively, p < 0.05) with EC50 values of 12 nM and 3 nM, respectively. These results indicate that the sibutramine metabolite M2 can act directly on murine and human adipose tissue to increase lipolysis via a pathway involving beta-adrenoceptors. © Georg Thieme Verlag KG Stuttgart.
Resumo:
Pioglitazone is a thiazolidinedione (TZD) antihyperglycemic agent introduced in 1999 for the treatment of type 2 (non-insulin dependent) diabetes mellitus. Another TZD, rosiglitazone, is also used in the treatment of type 2 diabetes. Troglitazone has been withdrawn from clinical use, and other TZDs, such as ciglitazone, have not proceeded into clinical use. Pioglitazone, like other TZDs, improves insulin action mainly by activation of the nuclear peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Peroxisome proliferator-activated receptor-gamma is most strongly expressed in adipose tissue and weakly expressed in liver and skeletal muscle, and activation of PPAR-gammain these tissues reinforces the effects of insulin. Pioglitazone may exert effects on other tissues that express PPAR-gamma ..... © 2007 Copyright © 2007 Elsevier Inc. All rights reserved.
Resumo:
Purpose of review: Although cachexia has a major effect on both the morbidity and mortality of cancer patients, information on the mechanisms responsible for this condition is limited. This review summarizes recent data in this area. Recent findings: Cachexia is defined as loss of muscle, with or without fat, frequently associated with anorexia, inflammation and insulin resistance. Loss of adipose mass is due to an increased lipolysis through an increased expression of hormone-sensitive lipase. Adipose tissue does not contribute to the inflammatory response. There is an increased phosphorylation of both protein kinase R (PKR) and eukaryotic initiation factor 2 on the α-subunit in skeletal muscle of cachectic cancer patients, which would lead to muscle atrophy through a depression in protein synthesis and an increase in degradation. Mice lacking the ubiquitin ligase MuRF1 are less susceptible to muscle wasting under amino acid deprivation. Expression of MuRF1 and atrogin-1 is increased by oxidative stress, whereas nitric oxide may protect against muscle atrophy. Levels of interleukin (IL)-6 correlate with cachexia and death due to an increase in tumour burden. Ghrelin analogues and melanocortin receptor antagonists increase food intake and may have a role in the treatment of cachexia. Summary: These findings provide impetus for the development of new therapeutic agents. © 2010 Wolters Kluwer Health
An investigation of primary human cell sources and clinical scaffolds for articular cartilage repair
Resumo:
Damage to articular cartilage of the knee can be debilitating because it lacks the capacity to repair itself and can progress to degenerative disorders such as osteoarthritis. The current gold standard for treating cartilage defects is autologous chondrocyte implantation (ACI). However, one of the major limitations of ACI is the use of chondrocytes, which dedifferentiate when grown in vitro and lose their phenotype. It is not clear whether the dedifferentiated chondrocytes can fully redifferentiate upon in vivo transplantation. Studies have suggested that undifferentiated mesenchymal stem or stromal cells (MSCs) from bone marrow (BM) and adipose tissue (AT) can undergo chondrogenic differentiation. Therefore, the main aim of this thesis was to examine BM and AT as a cell source for chondrogenesis using clinical scaffolds. Initially, freshly isolated cells were compared with culture expanded MSCs from BM and AT in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™. MSCs were shown to grow better in the three scaffolds compared to freshly isolated cells. BM MSCs in Chondro-Gide® were shown to have increased deposition of cartilage specific extracellular matrix (ECM) compared to AT MSCs. Further, this thesis has sought to examine whether CD271 selected MSCs from AT were more chondrogenic than MSCs selected on the basis of plastic adherence (PA). It was shown that CD271+MSCs may have superior chondrogenic properties in vitro and in vivo in terms of ECM deposition. The repair tissue seen after CD271+MSC transplantation combined with Alpha Chondro Shield® was also less vascularised than that seen after transplantation with PA MSCs in the same scaffold, suggesting antiangiogenic activity. Since articular cartilage is an avascular tissue, CD271+MSCs may be a better suited cell type compared to the PA MSCs. Hence, this study has increased the current understanding of how different cell-scaffold combinations may best be used to promote articular cartilage repair.
Resumo:
Obesity is a chronic metabolic disease characterized by adipose tissue formation excess leading to an increase in body fat mass, of multifactorial origin, produced mainly by poor eating habits combined with a sedentary lifestyle. Data consider obesity as a serious disease that affects the world's population, ranking fifth in death rates. Faced with this situation, individuals seek, increasingly, means to lose weight with less physical effort and food. In 2009 and 2010 the drug liraglutide was lauched in order to reduce weight in individuals with diabetes mellitus type 2, thus avoiding the emergence of other diseases. The aggravating factor is that obese nondiabetic individuals are making use of this substance, even if its use is not authorized by ANVISA (Brazilian Health Surveillance Agency). Thus the objective of this research is to evaluate the effect of liraglutide for muscle or fat tissues and biochemical parameters in Swiss mice submitted to cafeteria diet and physical activity. The study was approved by the Ethics Committee on Animal Use - CEUA (nº003 Protocol / 2014). For this study 74 animals (Swiss mice) were used, divided as follows: in the initial phase of this study, we carried out a pilot study (n = 10) divided into a control group (PCON) (n = 5) and cafeteria group (PCAF) (n = 5), in order to evaluate a cafeteria diet which was both attractive to the animals and that could provide an increase in adipose tissue. After the induction of the diet, animals were euthanized and as a result, the animals in the PCAF group showed an intra-abdominal adiposity 0.74 ± 0.05 g, taken as the parameter for increasing fat in animals. Subsequently the study base was conducted for this research where animals were used (n = 64) divided into 2 groups: the Cafeteria Study Base Group (EBCAF) divided as follows: cafeteria + exercise + liraglutide (CEL) (n = 8), cafeteria + exercise + saline (CES) (n = 8), cafeteria + liraglutide (CL) (n = 8) and cafeteria + saline (CS) (n = 8). The Chow Study Base group (EBR) was divided into: exercise + liraglutide (EL) (n = 8), exercise + saline + (ES) (n = 8), liraglutide (L) (n = 8) and saline solution (SS) (n = 8). All animals went through the submission process to the cafeteria diet, followed by exercise protocol through swimming and treatment with the test substance intraperitoneally (200 mg / mL / kg). After the treatments, the animals were euthanized and had the following parameters evaluated: the muscle tissue mass, adipose tissue mass and biochemical parameters. It was observed that the processing done with the exercise-associated liraglutide reduced adipose tissue mass significantly (0.32 ± 0.05 g) compared to the saline group (0.53 ± 0.07 g). There were no changes in the muscle tissue of the group which was treated and exercised (1.39 ± 0.03 g) compared to the saline group (1.33 ± 0.03 g). Regarding biochemical parameters it was evident that there were changes in these parameters. Interesting to note that, although blood glucose values have been changed, the animals did not become diabetic. Thus, it appears that physical activity together with liraglutide is eficcient to the loss of intraabdominal adipose tissue and the maintenance of lean body mass thereby generating a satisfactory result in the pursuit of quality of life and disease prevention.
Resumo:
Obesity is a chronic metabolic disease characterized by adipose tissue formation excess leading to an increase in body fat mass, of multifactorial origin, produced mainly by poor eating habits combined with a sedentary lifestyle. Data consider obesity as a serious disease that affects the world's population, ranking fifth in death rates. Faced with this situation, individuals seek, increasingly, means to lose weight with less physical effort and food. In 2009 and 2010 the drug liraglutide was lauched in order to reduce weight in individuals with diabetes mellitus type 2, thus avoiding the emergence of other diseases. The aggravating factor is that obese nondiabetic individuals are making use of this substance, even if its use is not authorized by ANVISA (Brazilian Health Surveillance Agency). Thus the objective of this research is to evaluate the effect of liraglutide for muscle or fat tissues and biochemical parameters in Swiss mice submitted to cafeteria diet and physical activity. The study was approved by the Ethics Committee on Animal Use - CEUA (nº003 Protocol / 2014). For this study 74 animals (Swiss mice) were used, divided as follows: in the initial phase of this study, we carried out a pilot study (n = 10) divided into a control group (PCON) (n = 5) and cafeteria group (PCAF) (n = 5), in order to evaluate a cafeteria diet which was both attractive to the animals and that could provide an increase in adipose tissue. After the induction of the diet, animals were euthanized and as a result, the animals in the PCAF group showed an intra-abdominal adiposity 0.74 ± 0.05 g, taken as the parameter for increasing fat in animals. Subsequently the study base was conducted for this research where animals were used (n = 64) divided into 2 groups: the Cafeteria Study Base Group (EBCAF) divided as follows: cafeteria + exercise + liraglutide (CEL) (n = 8), cafeteria + exercise + saline (CES) (n = 8), cafeteria + liraglutide (CL) (n = 8) and cafeteria + saline (CS) (n = 8). The Chow Study Base group (EBR) was divided into: exercise + liraglutide (EL) (n = 8), exercise + saline + (ES) (n = 8), liraglutide (L) (n = 8) and saline solution (SS) (n = 8). All animals went through the submission process to the cafeteria diet, followed by exercise protocol through swimming and treatment with the test substance intraperitoneally (200 mg / mL / kg). After the treatments, the animals were euthanized and had the following parameters evaluated: the muscle tissue mass, adipose tissue mass and biochemical parameters. It was observed that the processing done with the exercise-associated liraglutide reduced adipose tissue mass significantly (0.32 ± 0.05 g) compared to the saline group (0.53 ± 0.07 g). There were no changes in the muscle tissue of the group which was treated and exercised (1.39 ± 0.03 g) compared to the saline group (1.33 ± 0.03 g). Regarding biochemical parameters it was evident that there were changes in these parameters. Interesting to note that, although blood glucose values have been changed, the animals did not become diabetic. Thus, it appears that physical activity together with liraglutide is eficcient to the loss of intraabdominal adipose tissue and the maintenance of lean body mass thereby generating a satisfactory result in the pursuit of quality of life and disease prevention.
Resumo:
Grey seal, Halichoerus grypus, pups in the breeding colony at Froan, Norway, have a bimodal pattern of early aquatic behaviour. About 40% of the pups spend their time ashore to save energy, which can be allocated to growth or deposition of energy-rich adipose tissue. The other 60% of the pups enter the sea during suckling and the early postweaning period, and disperse to other locations within the breeding colony. Pups may swim distances up to 12 km. Neonatal aquatic dispersal behaviour may lead to increased energy expenditure for thermoregulation and swimming, and thus lead to a low rate of body mass gain during suckling and a high rate of body mass loss after weaning. Thus, we examined relationships between natal aquatic dispersal behaviour and change in body mass (DeltaBM) in suckling and weaned pups. Suckling pups that had dispersed >2000 m had a significantly lower DBM than suckling pups that dispersed <2000 m or that did not disperse. In weaned pups, there were no effects of aquatic dispersal behaviour on DBM. We suggest that the bimodal natal aquatic dispersal behaviour in grey seals at the study site reflects two different strategies for postweaning survival: to stay ashore and get fat, or to take a swim and acquire diving and feeding skills.