916 resultados para acidic waste
Resumo:
New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly mportant. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha?1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtureswere higher than in soil-digestate mixtures. For bothwastes, therewas no correlation between disolved reactive P lost and the water soluble P.The interaction between soil and waste, the long experimentation time, and the volume of leachate obtained caused the waste?s wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems.
Resumo:
In Spain, large quantities of wine are produced every year (3,339,700 tonnes in 2011) (FAO, 2011) with the consequent waste generation. During the winemaking process, solid residues like grape stalks are generated, as well as grape marc and wine lees as by-products. According to the Council Regulation (EC) 1493/1999 on the common organization of the wine market, by-products coming from the winery industry must be sent to alcohol-distilleries to generate exhausted grape marc and vinasses. With an adequate composting treatment, these wastes can be applied to soils as a source of nutrients and organic matter. A three-year field experiment (2011, 2012 and 2013) was carried out in Ciudad Real (central Spain) to study the effects of wine-distillery waste compost application in a melon crop (Cucumis melo L.). Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. In a randomized complete block design, four treatments were compared: three compost doses consisted of 6.7 (D1), 13.3 (D2) and 20 t compost ha-1 (D3), and a control treatment without compost addition (D0). The soil was a shallow sandy-loam (Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 8.4), poor in organic matter (0.24%), rich in potassium (410 ppm) and with a medium level of phosphorus (22.1 ppm). During each growing period four harvests were carried out and total and marketable yield (fruits weighting <1 kg or visually rotten were not considered), fruit average weight and fruit number per plant were determined. At the end of the crop cycle, four plants per treatment were sampled and the nutrient content (N, P and K) was determined. Soil samplings (0-30 cm depth) were carried before the application of compost and at the end of each growing season and available N and P, as well as exchangeable K content were analyzed. With this information, an integrated analysis was carried out with the aim to evaluate the suitability of this compost as organic amendment.
Resumo:
Sulphur compounds remaining in petroleum fractions from topping, hydroskimming or deep conversion processes are a growing concern for oil refiners since in the lapse of a few years the sulphur specification for motor fuels has dropped from 500 mg/kg to 10 mg/kg in most European countries. This increasingly stringent regulation has forced refineries to greatly improve their hydrodesulfurization units, increasing the desulfurization rates and thus consuming huge amounts of hydrogen.
Resumo:
En un mundo altamente urbanizado, la gestión de residuos sólidos es un problema primordial en toda ciudad. Las ciudades de paises en desarrollo deben además afrontar retos que no afectan a las ciudades de paises desarrollados. En los paises en desarrollo muchas municipalidades sufren un crecimiento descontrolado de los asentamientos informales sin planificación urbana que hace muy complicada una adecuada gestión de los residuos sólidos urbanos, situación que se agrava al no contar estas con suficientes recursos económicos para llevar a cabo su responsabilidad en cuanto a provisión del sevicio básico de recogida de residuos. La provisión de servicio de recogida de residuos por parte de SHGs (grupos de ayuda comunitarios) en estos asentamientos informales puede ayudar a resolver algunos de estos problemas. Para que esta oportunidad sea completamente explotada, los ingresos de estos grupos deben ser garantizados, teniendo en cuenta que la sostenibilidad de estos grupos depende enteramente de ello. Este estudio pretende averiguar cómo un enfoque de cadena de valor puede mejorar la sostenibilidad de la gestión de residuos sólidos, permitiendo asegurar los ingresos de los recolectores informales de residuos. El estudio propondrá después de analizado el actual sistema, mejoras que permitan desarrollar un medio ambiente saludable en los asentamientos informales donde se desarrolla el estudio. Para alcanzar este objetivo, se ha desarrollado una investigación específica en Nairobi (Kenia) en el asentamiento precario de Mukuru Kwa Njenga, analizando los distintos aspectos relevantes que tienen influencia en una gestión integrada de residuos sólidos y las relaciones entre los distintos actores que tienen influencia en la misma.
Resumo:
Biochar is a carbon-rich solid obtained by the thermal decomposition of organic matter under a limited supply of oxygen and at relatively low temperatures. Biochar can be prepared from the pyrolysis of different organic feed- stocks, such as wood and biomass crops, agricultural by-products, different types of waste or paper industry waste materials . The pyrolysis procedure of waste, i.e. sewage sludge, has mainly two advantages, firstly, it removes pathogens from waste and, secondly, biochar can reduce the leaching of heavy metals present in raw sewage sludge. This trend of the use of waste material as feedstocks to the preparation of biochar is increasing in the last years due to industrial development and economic growth imply an increase in waste generation. The application of biochar may have positive effects on soil physical properties as water holding capacity and structure or on soil biological activity and soil quality. Also, biochar can be used to remove water pollutants and can be used in multiple ways in soil remediation due to its adsorption of pesticides or metals. Also, biochar contribute to carbon sequestration due to carbon stability of biochar materials. The objective of this presentation is to review the positive effects of the biochar prepared from organic waste on soil properties.
Resumo:
Current EU Directives force the Member States to assure by 2020 that 70% of the Construction and Demolition (C&D) waste is recovered instead of landfilled. While some countries have largely achieved this target, others still have a long way to go. For better understanding the differences arising from local disparities, six factors related to technical, economic, legislative and environmental aspects have been identified as crucial influences in the market share of C&D waste recycling solutions. These factors are able to identify the causes that limit the recycling rate of a certain region. Moreover, progress towards an efficient waste management can vary through the improvement of a single factor. This study provides the background for further fine-tuning the factors and their combination into a mathematical model for assessing the market share of C&D recycling solutions.
Resumo:
Bismuth ultra-thin films grown on n-GaAs electrodes via electrodeposition are porous due to a blockade of the electrode surface caused by adsorbed hydrogen when using acidic electrolytes. In this study, we discuss the existence of two sources of hydrogen adsorption and we propose different routes to unblock the n-GaAs surface in order to improve Bi films compactness. Firstly, we demonstrate that increasing the electrolyte temperature provides compact yet polycrystalline Bi films. Cyclic voltammetry scans indicate that this low crystal quality might be a result of the incorporation of Bi hydroxides within the Bi film as a result of the temperature increase. Secondly, we have illuminated the semiconductor surface to take advantage of photogenerated holes. These photocarriers oxidize the adsorbed hydrogen unblocking the surface, but also create pits at the substrate surface that degrade the Bi/GaAs interface and prevent an epitaxial growth. Finally, we show that performing a cyclic voltammetry scan before electrodeposition enables the growth of compact Bi ultra-thin films of high crystallinity on semiconductor substrates with a doping level low enough to perform transport measurements.
Resumo:
For the energy valorization of alperujo, residue of the olive oil two phases extraction process, it is necessary to perform a drying process to reduce moisture content from over 60% to less than 10%. In order to reduce primary energy consumption and get an economic return, usually in this kind of drying facilities Gas Turbine CHP is used as a heat source. There have been recently in Spain some fires in this kind of GT-CHP facilities, which have caused high material losses. In some of these fires it has been suggested that the fire was caused by the output of incandescent alperujo in the flue gasesof the drying system. Therefore, the aim of this study is to determine experimentally and analytically under which operational conditions a process of alperujo self-ignition in the drying process can begin, and determine the actual fire hazard in this type of TG-CHP system. For analytical study, the temperature and initial composition of the combustion gases of the Gas Turbine at the entrance of the drying process was calculated and the gas equilibrium conditions reached in contact with the biomass were calculated and, therefore, the temperature of the biomass during the drying process. Moreover, the layer and dust ignition temperature of alperujo has been experimentally determined, according to EN 50281-2-1: 2000. With these results, the operating conditions of the drying process, in which there are real risk of auto-ignition of alperujo have been established.Para la valorización energética del alperujo, residuo del proceso de extracción en dos fases del aceite de oliva, es necesario realizar un proceso de secado para reducir su contenido de humedad de más del 60% al 10% m/m en b.h. Con el fin de reducir el consumo de energía primaria y obtener una rentabilidad económica, normalmente en este tipo de instalaciones de secado se usa la cogeneración con turbina de gas (TG) como fuente de calor. En España en los últimos años han ocurrido algunos casos de incendio en este tipo de instalaciones de cogeneración, que han supuesto pérdidas materiales muy elevadas. Por esta razón, el objetivo de este trabajo es determinar analítica y experimentalmente las condiciones operativas del secadero bajo las cuales podría comenzar un proceso de autoinflamación del alperujo y determinar el riesgo real de incendio en este tipo de instalaciones. Para el estudio analítico, se ha planteado y validado el modelo matemático que permite calcular la temperatura y la composición de los gases de combustión a la entrada y a la salida del secadero, en función de las curvas características de la TG, de las condiciones atmosféricas, del caudal y del grado de humedad de la biomasa tratada. El modelo permite además calcular la temperatura de bulbo húmedo, que es la máxima temperatura que podría alcanzar la biomasa durante el proceso de secado y determinar la cantidad de biomasa que se puede secar completamente en función del caudal y de las condiciones de entrada de los gases de combustión. Con estos resultados y la temperatura mínima de autoinflamación del alperujo determinada experimentalmente siguiendo la norma EN 50281- 2-1:2000, se demuestra que en un proceso de secado de alperujo en condiciones normales de operación no existe riesgo de autoencendido que pueda dar origen a un incendio.
Resumo:
Human p32 (also known as SF2-associated p32, p32/TAP, and gC1qR) is a conserved eukaryotic protein that localizes predominantly in the mitochondrial matrix. It is thought to be involved in mitochondrial oxidative phosphorylation and in nucleus–mitochondrion interactions. We report the crystal structure of p32 determined at 2.25 Å resolution. The structure reveals that p32 adopts a novel fold with seven consecutive antiparallel β-strands flanked by one N-terminal and two C-terminal α-helices. Three monomers form a doughnut-shaped quaternary structure with an unusually asymmetric charge distribution on the surface. The implications of the structure on previously proposed functions of p32 are discussed and new specific functional properties are suggested.
Resumo:
Chorismate mutase acts at the first branchpoint of aromatic amino acid biosynthesis and catalyzes the conversion of chorismate to prephenate. Comparison of the x-ray structures of allosteric chorismate mutase from the yeast Saccharomyces cerevisiae with Escherichia coli chorismate mutase/prephenate dehydratase suggested conserved active sites between both enzymes. We have replaced all critical amino acid residues, Arg-16, Arg-157, Lys-168, Glu-198, Thr-242, and Glu-246, of yeast chorismate mutase by aliphatic amino acid residues. The resulting enzymes exhibit the necessity of these residues for catalytic function and provide evidence of their localization at the active site. Unlike some bacterial enzymes, yeast chorismate mutase has highest activity at acidic pH values. Replacement of Glu-246 in the yeast chorismate mutase by glutamine changes the pH optimum for activity of the enzyme from a narrow to a broad pH range. These data suggest that Glu-246 in the catalytic center must be protonated for maximum catalysis and restricts optimal activity of the enzyme to low pH.
Resumo:
We report the discovery and molecular characterization of a small and very acidic nucleolar protein of an SDS/PAGE mobility corresponding to Mr 29,000 (NO29). The cDNA-deduced sequence of the Xenopus laevis protein defines a polypeptide of a calculated molecular mass of 20,121 and a pI of 3.75, with an extended acidic region near its C terminus, and is related to the major nucleolar protein, NO38, and the histone-binding protein, nucleoplasmin. This member of the nucleoplasmin family of proteins was immunolocalized to nucleoli in Xenopus oocytes and diverse somatic cells. Protein NO29 is associated with nuclear particles from Xenopus oocytes, partly complexed with protein NO38, and occurs in preribosomes but not in mature ribosomes. The location and the enormously high content of negatively charged amino acids lead to the hypothesis that NO29 might be involved in the nuclear and nucleolar accumulation of ribosomal proteins and the coordinated assembly of pre-ribosomal particles.
Resumo:
Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA and CSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, the CSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.
Resumo:
Endocytic uptake and intracellular transport of acidic FGF was studied in cells transfected with FGF receptor 4 (FGFR4). Acidification of the cytosol to block endocytic uptake from coated pits did not inhibit endocytosis of the growth factor in COS cells transfected with FGFR4, indicating that it is to a large extent taken up by an alternative endocytic pathway. Fractionation of the cells demonstrated that part of the growth factor receptor was present in a low-density, caveolin-containing fraction, but we were unable to demonstrate binding to caveolin in immunoprecipitation studies. Upon treatment of the cells with acidic FGF, the activated receptor, together with the growth factor, moved to a juxtanuclear compartment, which was identified as the recycling endosome compartment. When the cells were lysed with Triton X-100, 3-([3-chloramidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate, or 2-octyl glucoside, almost all surface-exposed and endocytosed FGFR4 was solubilized, but only a minor fraction of the total FGFR4 in the cells was found in the soluble fraction. The data indicate that the major part of FGFR4 is anchored to detergent-insoluble structures, presumably cytoskeletal elements associated with the recycling endosome compartment.
Resumo:
The infectious agent of transmissible spongiform encephalopathies is believed to consist of an oligomeric isoform, PrPSc, of the monomeric cellular prion protein, PrPC. The conversion of PrPC to PrPSc is characterized by a decrease in α-helical structure, an increase in β-sheet content, and the formation of PrPSc amyloid. Whereas the N-terminal part of PrPC comprising residues 23–120 is flexibly disordered, its C-terminal part, PrP(121–231), forms a globular domain with three α-helices and a small β-sheet. Because the segment of residues 90–231 is protease-resistant in PrPSc, it is most likely structured in the PrPSc form. The conformational change of the segment containing residues 90–120 thus constitutes the minimal structural difference between PrPC and a PrPSc monomer. To test whether PrP(121–231) is also capable to undergo conformational transitions, we analyzed its urea-dependent unfolding transitions at neutral and acidic pH. We identified an equilibrium unfolding intermediate of PrP(121–231) that is exclusively populated at acidic pH and shows spectral characteristics of a β-sheet protein. The intermediate is in rapid equilibrium with native PrP(121–231), significantly populated in the absence of urea at pH 4.0, and may have important implications for the presumed formation of PrPSc during endocytosis.