789 resultados para Y Generation
Resumo:
Large number of rooftop Photovoltaics (PVs) have turned traditional passive networks into active networks with intermittent and bidirectional power flow. A community based distribution network grid reinforcement process is proposed to address technical challenges associated with large integration of rooftop PVs. Probabilistic estimation of intermittent PV generation is considered. Depending on the network parameters such as the R/X ratio of distribution feeder, either reactive control from PVs or coordinated control of PVs and Battery Energy Storage (BES) has been proposed. Determination of BES capacity is one of the significant outcomes from the proposed method and several factors such as variation in PV installed capacity as well as participation from community members are analyzed. The proposed approach is convenient for the community members providing them flexibility of managing their integrated PV and BES systems
Resumo:
Background: In recent years, there have been investigations concerning upper-limbs kinematics by various devices. The latest generation of smartphones often includes inertial sensors with subunits which can detect inertial kinematics. The use of smartphones is presented as a convenient and portable analysis method for studying kinematics in terms of angular mobility and linear acceleration Objective: The aim of this study was to study humerus kinematics through six physical properties that correspond to angular mobility and acceleration in the three axes of space, obtained by a smartphone. Methods: This cross-sectional study recruited healthy young adult subjects. Descriptive and anthropometric independent variables related to age, gender, weight, size, and BMI were included. Six physical properties were included corresponding to two dependent variables for each of three special axes: mobility angle (degrees) and lineal acceleration (meters/seconds2), which were obtained thought the inertial measurement sensor embedded in the iPhone4 smartphone equipped with three two elements for the detection of kinematic variables: a gyroscope and an accelerometer. Apple uses an LIS302DL accelerometer in the iPhone4. The application used to obtain kinematic data was xSensor Pro, Crossbow Technology, Inc., available at the Apple AppStore. The iPhone4 has storage capacity of 20MB. The data-sampling rate was set to 32 Hz, and the data for each analytical task was transmitted as email for analysis and postprocessing The iPhone4 was placed in the right half of the body of each subject located in the middle third of the humerus slightly posterior snugly secured by a neoprene fixation belt. Tasks were explained concisely and clearly. The beginning and the end were decided by a verbal order by the researcher. Participants were placed standing, starting from neutral position, performing the following analytical tasks: 180º right shoulder abduction (eight repetitions) and, after a break of about 3 minutes, 180º right shoulder flexion (eight repetitions). Both tasks were performed with the elbow extended, wrist in neutral position and the palmar area of the hand toward the midline at the beginning and end of the movement. Results: A total of 11 subjects (8 men, 3 woman) were measured, whose mean of age was 24.7 years (SD = 4.22 years) and their average BMI was 22.64 Kg/m2 (SD = 2.29 Kg/m2). The mean of angular mobility collected by the smartphone was bigger in pitch axis for flexion (= 157.28°, SD= 12.35°) and abduction (= 151.71°, SD= 9.70°). With regard to acceleration, the highest peak mean value was shown in the Y motion axis during flexion (= 19.5°/s2, SD = 0.8°/s2) and abduction (= 19.4°/s2, SD = 0.8°/s2). Also, descriptive graphics of analytical tasks performed were obtained. Conclusions: This study shows how humerus contributes to upper-limb motion and it identified movement patterns. Therefore, it supports smartphone as a useful device to analyze upper-limb kinematics. Thanks to this study it´s possible to develop a simple application that facilitates the evaluation of the patient.
Resumo:
Sans Faute (without fail) considers how technology has influenced Chinese society, culture and practice. The exhibition seeks to reveal a shared language between Western and Chinese contexts that exists through employing technology as a universal creative meeting point. The pervasive impact of the current digital landscape has been widely recognised, embraced and continues to influence many aspects of Chinese lives. The significance of these shifting contexts on contemporary art is explored in Sans Faute. Through the presentation of a range of video installations, the exhibition aims to initiate rigorous and critical engagement with these provocative works that challenge traditional ideologies to discover emergent ideas. Featuring works by eight artists from mainland China, Sans Faute is an exploration of different attitudes collected together to provide a complete picture of how these artists build a new iconic imagery. "The works of these artists present a younger generation's thinking of the reality of contemporary China through their own emotional and individual life experience," says Stephen Danzig, IDAprojects director. "We are currently witnessing an amazing re-identification in so many elements that make up China's social fabric - none more so than what's happening in the arts currently. You only need to see what's happening in Beijing to realise the pace of change." Sans Faute has been supported by QUT Confucius Institute.
Resumo:
Portable water-filled barriers (PWFB) are roadside structures used to enhance safety at roadside work-zones. Ideally, a PWFB system is expected to protect persons and objects behind it and redirect the errant vehicle. The performance criteria of a road safety barrier system are (i) redirection of the vehicle after impact and (ii) lateral deflection within allowable limits. Since its inception, the PWFB has received criticism due to its underperformance compared to the heavier portable concrete barrier. A new generation composite high energy absorbing road safety barrier was recently developed by the authors.
Resumo:
Dendrimers have potential for delivering chemotherapeutic drugs to solid tumours via the enhanced permeation and retention (EPR) effect. The impact of conjugation of hydrophobic anticancer drugs to hydrophilic PEGylated dendrimer surfaces, however, has not been fully investigated. The current study has therefore characterised the effect on dendrimer disposition of conjugating α-carboxyl protected methotrexate (MTX) to a series of PEGylated 3H-labelled poly-L-lysine dendrimers ranging in size from generation 3 (G3) to 5 (G5) in rats. Dendrimers contained 50% surface PEG and 50% surface MTX. Conjugation of MTX generally increased plasma clearance when compared to conjugation with PEG alone. Conversely, increasing generation reduced clearance, increased metabolic stability and reduced renal elimination of the administered radiolabel. For constructs with molecular weights >20 kDa increasing the molecular weight of conjugated PEG also reduced clearance and enhanced metabolic stability but had only a minimal effect on renal elimination. Tissue distribution studies revealed retention of MTX conjugated smaller (G3-G4) PEG570 dendrimers (or their metabolic products) in the kidneys. In contrast, the larger G5 dendrimer was concentrated more in the liver and spleen. The G5 PEG1100 dendrimer was also shown to accumulate in solid Walker 256 and HT1080 tumours and comparative disposition data in both rats (1 to 2% dose/g in tumour) and mice (11% dose/g in tumour) are presented. The results of this study further illustrate the potential utility of biodegradable PEGylated poly-L-lysine dendrimers as long circulating vectors for the delivery and tumour-targeting of hydrophobic drugs.
Resumo:
Ascidians are marine invertebrates that have been a source of numerous cytotoxic compounds. Of the first six marine-derived drugs that made anticancer clinical trials, three originated from ascidian specimens. In order to identify new anti-neoplastic compounds, an ascidian extract library (143 samples) was generated and screened in MDA-MB-231 breast cancer cells using a real-time cell analyzer (RTCA). This resulted in 143 time-dependent cell response profiles (TCRP), which are read-outs of changes to the growth rate, morphology, and adhesive characteristics of the cell culture. Twenty-one extracts affected the TCRP of MDA-MB-231 cells and were further investigated regarding toxicity and specificity, as well as their effects on cell morphology and cell cycle. The results of these studies were used to prioritize extracts for bioassay-guided fractionation, which led to the isolation of the previously identified marine natural product, eusynstyelamide B (1). This bis-indole alkaloid was shown to display an IC50 of 5 μM in MDA-MB-231 cells. Moreover, 1 caused a strong cell cycle arrest in G2/M and induced apoptosis after 72 h treatment, making this molecule an attractive candidate for further mechanism of action studies.
Resumo:
BACKGROUND: The use of nonstandardized N-terminal pro-B-type natriuretic peptide (NT-proBNP) assays can contribute to the misdiagnosis of heart failure (HF). Moreover, there is yet to be established a common consensus regarding the circulating forms of NT-proBNP being used in current assays. We aimed to characterize and quantify the various forms of NT-proBNP in the circulation of HF patients. METHODS: Plasma samples were collected from HF patients (n = 20) at rest and stored at -80 degrees C. NT-proBNP was enriched from HF patient plasma by use of immunoprecipitation followed by mass spectrometric analysis. Customized homogeneous sandwich AlphaLISA (R) immunoassays were developed and validated to quantify 6 fragments of NT-proBNP. RESULTS: Mass spectrometry identified the presence of several N- and C-terminally processed forms of circulating NT-proBNP, with physiological proteolysis between Pro2-Leu3, Leu3-Gly4, Pro6-Gly7, and Pro75-Arg76. Consistent with this result, AlphaLISA immunoassays demonstrated that antibodies targeting the extreme N or C termini measured a low apparent concentration of circulating NT-proBNP. The apparent circulating NT-proBNP concentration was increased with antibodies targeting nonglycosylated and nonterminal epitopes (P < 0.05). CONCLUSIONS: In plasma collected from HF patients, immunoreactive NT-proBNP was present as multiple N- and C-terminally truncated fragments of the full length NT-proBNP molecule. Immunodetection of NT-proBNP was significantly improved with the use of antibodies that did not target these terminal regions. These findings support the development of a next generation NT-proBNP assay targeting nonterminal epitopes as well as avoiding the central glycosylated region of this molecule. (c) 2013 American Association for Clinical Chemistry
Resumo:
The advent of very high resolution (VHR) optical satellites capable of producing stereo images led to a new era in extracting digital elevation model which commenced with the launch of IKONOS. The special specifications of VHR optical satellites besides, the significant economic profit stimulated other countries and companies to have their constellations such as EROS-A1 and EROS-B1 as the cooperation between Israel and ImageSat. QuickBird, WorldView-1 and WorldVew-2 were launched by DigitalGlobe. ALOS and GeoEye-1 were offered by Japan and GeoEye Respectively. In addition to aforementioned satellites, Indian and South Korea initiated their own constellation by launching CartoSat-1 and KOPOSAT-2 respectively.The availability of all so-called satellites make a huge market of stereo images for extracting of digital elevation model and other correspondent applications such as, producing orthorectifcatin images and updating maps. Therefore, there is a need for a comprehensive comparison for scientific and commercial clients to choose appropriate satellite images and methods of generating digital elevation model to obtain optimum results. This paper will thus give a review about the specifications of VHR optical satellites. Then it will discuss the automatic elaborating of digital elevation model. Finally an overview of studies and corresponding results is reported.
Resumo:
This study aims to assess the accuracy of Digital Elevation Model (DEM) which is generated by using Toutin’s model. Thus, Toutin’s model was run by using OrthoEngineSE of PCI Geomatics 10.3.Thealong-track stereoimages of Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) sensor with 15 m resolution were used to produce DEM on an area with low and near Mean Sea Level (MSL) elevation in Johor Malaysia. Despite the satisfactory pre-processing results the visual assessment of the DEM generated from Toutin’s model showed that the DEM contained many outliers and incorrect values. The failure of Toutin’s model may mostly be due to the inaccuracy and insufficiency of ASTER ephemeris data for low terrains as well as huge water body in the stereo images.
Resumo:
Rapid development of plug-in hybrid electric vehicles (PHEVs) brings new challenges and opportunities to the power industry. A large number of idle PHEVs can potentially be employed to form a distributed energy storage system for supporting renewable generation. To reduce the negative effects of unsteady renewable generation outputs, a stochastic optimization-based dispatch model capable of handling uncertain outputs of PHEVs and renewable generation is formulated in this paper. The mathematical expectations, second-order original moments, and variances of wind and photovoltaic (PV) generation outputs are derived analytically. Incorporated all the derived uncertainties, a novel generation shifting objective is proposed. The cross-entropy (CE) method is employed to solve this optimal dispatch model. Multiple patterns of renewable generation depending on seasons and renewable market shares are investigated. The feasibility and efficiency of the developed optimal dispatch model, as well as the CE method, are demonstrated with a 33-node distribution system.
Resumo:
The importance of clean drinking water in any community is absolutely vital if we as the consumers are to sustain a life of health and wellbeing. Suspended particles in surface waters not only provide the means to transport micro-organisms which can cause serious infections and diseases, they can also affect the performance capacity of a water treatment plant. In such situations pre-treatment ahead of the main plant is recommended. Previous research carried out using non-woven synthetic as a pre-filter materials for protecting slow sand filters from high turbidity showed that filter run times can be extended by several times and filters can be regenerated by simply removing and washing of the fabric ( Mbwette and Graham, 1987 and Mbwette, 1991). Geosynthetic materials have been extensively used for soil retention and dewatering in geotechnical applications and little research exists for the application of turbidity reduction in water treatment. With the development of new materials in geosynthetics today, it was hypothesized that the turbidity removal efficiency can be improved further by selecting appropriate materials. Two different geosynthetic materials (75 micron) tested at a filtration rate of 0.7 m/h yielded 30-45% reduction in turbidity with relatively minor head loss. It was found that the non-woven geotextile Propex 1701 retained the highest performance in both filtration efficiency and head loss across the varying turbidity ranges in comparison to other geotextiles tested. With 5 layers of the Propex 1701 an average percent reduction of approximately 67% was achieved with a head loss average of 4mm over the two and half hour testing period. Using the data collected for the Propex 1701 a mathematical model was developed for predicting the expected percent reduction given the ability to control the cost and as a result the number of layers to be used in a given filtration scenario.