945 resultados para Wood-engraving.
Resumo:
Australian forest industries have a long history of export trade of a wide range of products from woodchips (for paper manufacturing), sandalwood (essential oils, carving and incense) to high value musical instruments, flooring and outdoor furniture. For the high value group, fluctuating environmental conditions brought on by changes in temperature and relative humidity, can lead to performance problems due to consequential swelling, shrinkage and/or distortion of the wood elements. A survey determined the types of value-added products exported, including species and dimensions packaging used and export markets. Data loggers were installed with shipments to monitor temperature and relative humidity conditions. These data were converted to timber equilibrium moisture content values to provide an indication of the environment that the wood elements would be acclimatising to. The results of the initial survey indicated that primary high value wood export products included guitars, flooring, decking and outdoor furniture. The destination markets were mainly located in the northern hemisphere, particularly the United States of America, China, Hong Kong, Europe (including the United Kingdom), Japan, Korea and the Middle East. Other regions importing Australian-made wooden articles were south-east Asia, New Zealand and South Africa. Different timber species have differing rates of swelling and shrinkage, so the types of timber were also recorded during the survey. Results from this work determined that the major species were ash-type eucalypts from south-eastern Australia (commonly referred to in the market as Tasmanian oak), jarrah from Western Australia, spotted gum, hoop pine, white cypress, black butt, brush box and Sydney blue gum from Queensland and New South Wales. The environmental conditions data indicated that microclimates in shipping containers can fluctuate extensively during shipping. Conditions at the time of manufacturing were usually between 10 and 12% equilibrium moisture content, however conditions during shipping could range from 5 (very dry) to 20% (very humid). The packaging systems incorporated were reported to be efficient at protecting the wooden articles from damage during transit. The research highlighted the potential risk for wood components to ‘move’ in response to periods of drier or more humid conditions than those at the time of manufacturing, and the importance of engineering a packaging system that can account for the environmental conditions experienced in shipping containers. Examples of potential dimensional changes in wooden components were calculated based on published unit shrinkage data for key species and the climatic data returned from the logging equipment. The information highlighted the importance of good design to account for possible timber movement during shipping. A timber movement calculator was developed to allow designers to input component species, dimensions, site of manufacture and destination, to see validate their product design.
Resumo:
Little is known about historic wood as it ages naturally. Instead, most studies focus on biological decay, as it is often assumed that wood remains otherwise stable with age. This PhD project was organised by Historic Scotland and the University of Glasgow to investigate the natural chemical and physical aging of wood. The natural aging of wood was a concern for Historic Scotland as traditional timber replacement is the standard form of repair used in wooden cultural heritage; replacing rotten timber with new timber of the same species. The project was set up to look at what differences could exist both chemically and physically between old and new wood, which could put unforeseen stress on the joint between them. Through Historic Scotland it was possible to work with genuine historic wood from two species, Oak and Scots pine, both from the 1500’s, rather than relying on artificial aging. Artificial aging of wood is still a debated topic, with consideration given to whether it is truly mimicking the aging process or just damaging the wood cells. The chemical stability of wood was investigated using Fourier-transform infrared (FTIR) microscopy, as well as wet chemistry methods including a test for soluble sugars from the possible breakdown of the wood polymers. The physical properties assessed included using a tensile testing machine to uncover possible differences in mechanical properties. An environmental chamber was used to test the reaction to moisture of wood of different ages, as moisture is the most damaging aspect of the environment to wooden cultural objects. The project uncovered several differences, both physical and chemical, between the modern and historic wood which could affect the success of traditional ‘like for like’ repairs. Both oak and pine lost acetyl groups, over historic time, from their hemicellulose polymers. This chemical reaction releases acetic acid, which had no effect on the historic oak but was associated with reduced stiffness in historic pine, probably due to degradation of the hemicellulose polymers by acid hydrolysis. The stiffness of historic oak and pine was also reduced by decay. Visible pest decay led to loss of wood density but there was evidence that fungal decay, extending beyond what was visible, degraded the S2 layer of the pine cell walls, reducing the stiffness of the wood by depleting the cellulose microfibrils most aligned with the grain. Fungal decay of polysaccharides in pine wood left behind sugars that attracted increased levels of moisture. The degradation of essential polymers in the wood structure due to age had different impacts on the two species of wood, and raised questions concerning both the mechanism of aging of wood and the ways in which traditional repairs are implemented, especially in Scots pine. These repairs need to be done with more care and precision, especially in choosing new timber to match the old. Within this project a quantitative method of measuring the microfibril angle (MFA) of wood using polarised Fourier transform infrared (FTIR) microscopy has been developed, allowing the MFA of both new and historic pine to be measured. This provides some of the information needed for a more specific match when selecting replacement timbers for historic buildings.
Resumo:
Ten growth or wood-quality traits were assessed in three nearby Corymbia citriodora subsp. variegata (CCV) open-pollinated family-within-provenance trials (18 provenances represented by a total of 374 families) to provide information for the development of a breeding program targeting both pulp and solid-wood products. Growth traits (diameter at breast high over bark [DBH], height and conical volume) were assessed at 3 and 7 years of age. Wood-quality traits (density [DEN], Kraft pulp yield [KPY], modulus of elasticity [MoE] and microfibril angle [MfA]) were predicted using near-infrared spectroscopy on wood samples collected from these trials when aged between 10 and 12 years. The high average KPY, DEN and MoE, and low average MfA observed indicates CCV is very suitable for both pulp and timber products. All traits were under moderate to strong genetic control. In across- trials analyses, high (>0.4) heritability estimates were observed for height, DEN, MoE and MfA, while moderate heritability estimates (0.24 to 0.34) were observed for DBH, volume and KPY. Most traits showed very low levels of genotype × site interaction. Estimated age–age genetic correlations for growth traits were strong at both the family (0.97) and provenance (0.99) levels. Relationships among traits (additive genetic correlation estimates) were favourable, with strong and positive estimates between growth traits (0.84 to 0.98), moderate and positive values between growth and wood-quality traits (0.32 to 0.68), moderate and positive between KPY and MoE (0.64), and high and positive between DEN and MoE (0.82). However, negative (but favourable) correlations were detected between MfA and all other evaluated traits (−0.31 to −0.96). The genetic correlation between the same trait expressed on two different sites, at family level, ranged from 0.24 to 0.42 for growth traits, and from 0.29 to 0.53 for wood traits. Therefore simultaneous genetic improvement of growth and wood property traits in CCV for the target environment in south-east Queensland should be possible, given the moderate to high estimates of heritability and favourable correlations amongst all traits studied, unless genotype × site interactions are greater than was evident. © 2016 NISC (Pty) Ltd
Enzymatic hydrolysis and fermentation of ultradispersed wood particles after ultrasonic pretreatment
Resumo:
Background: A study of the correlation between the particle size of lignocellulosic substrates and ultrasound pretreatment on the efficiency of further enzymatic hydrolysis and fermentation to ethanol. Results: Themaximumconcentrations of glucose and, to a lesser extent, di- and trisaccharideswere obtained in a series of experiments with 48-h enzymatic hydrolysis of pine rawmaterials ground at 380–400 rpm for 30min. The highest glucose yield was observed at the end of the hydrolysis with a cellulase dosage of 10 mg of protein (204 ± 21 units CMCase per g of sawdust). The greatest enzymatic hydrolysis efficiency was observed in a sample that combined two-stage grinding at 400 rpm with ultrasonic treatment for 5–10 min at a power of 10 W per kg of sawdust. The glucose yield in this case (35.5 g glucose l−1) increased twofold compared to ground substrate without further preparation. Conclusions: Using a mechanical two-stage grinding of lignocellulosic raw materials with ultrasonication increases the efficiency of subsequent enzymatic hydrolysis and fermentation.
Resumo:
Driven by the global trend in the sustainable economy development and environmental concerns, the exploring of plant-derived biomaterials or biocomposites for potential biomedical and/or pharmaceutical applications has received tremendous attention. Therefore, the work of this thesis is dedicated to high-value and high-efficiency utilization of plant-derived materials, with the focus on cellulose and hemicelluloses in the field of biomedical applications in a novel biorefinery concept. The residual cellulose of wood processing waste, sawdust, was converted into cellulose nanofibrils (CNFs) with tunable surface charge density and geometric size through 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-mediated oxidation and mechanical defibrillation. The sawdust-based CNFs and its resultant free-standing films showed comparable or even better mechanical properties than those from a commercial bleached kraft pulp at the same condition, demonstrating the feasibility of producing CNFs and films thereof with outstanding mechanical properties from birch sawdust by a process incorporated into a novel biorefinery platform recovering also polymeric hemicelluloses for other applications. Thus, it is providing an efficient route to upgrade sawdust waste to valuable products. The surface charge density and geometric size of the CNFs were found to play key roles in the stability of the CNF suspension, as well as the gelling properties, swelling behavior, mechanical stiffness, morphology and microscopic structural properties, and biocompatibility of CNF-based materials (i.e. films, hydrogels, and aerogels). The CNFs with tunable surface chemistry and geometric size was found promising applications as transparent and tough barrier materials or as reinforcing additive for production of biocomposites. The CNFs was also applied as structural matrices for the preparation of biocomposites possessing electrical conductivity and antimicrobial activity by in situ polymerization and coating of polypyrrole, and incorporation of silver nanoparticles, which make the material possible for potential wound healing application. The CNF-based matrices (films, hydrogels, and aerogels) with tunable structural and mechanical properties and biocompatibility were further prepared towards an application as 3D scaffolds in tissue engineering. The structural and mechanical strength of the CNF matrices could be tuned by controlling the charge density of the nanocellulose, as well as the pH and temperature values of the hydrogel formation conditions. Biological tests revealed that the CNF scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells, suggesting the usefulness of the CNF-based 3D matrices in supporting crucial cellular processes during cell growth and proliferation. The CNFs was applied as host materials to incorporate biomolecules for further biomedical application. For example, to investigate how the biocompatibility of a scaffold is influenced by its mechanical and structural properties, these properties of CNF-based composite matrices were controlled by incorporation of different hemicelluloses (O-acetyl galactoglucomanan (GGM), xyloglucan (XG), and xylan) into CNF hydrogel networks in different ratios and using two different approaches. The charge density of the CNFs, the incorporated hemicellulose type and amount, and the swelling time of the hydrogels were found to affect the pore structure, the mechanical strength, and thus the cells growth in the composite hydrogel scaffolds. The mechanical properties of the composite hydrogels were found to have an influence on the cell viability during the wound healing relevant 3T3 fibroblast cell culture. The thusprepared CNF composite hydrogels may work as promising scaffolds in wound healing application to provide supporting networks and to promote cells adhesion, growth, and proliferation.
Resumo:
vol.I. Introduction to Athyrium.--vol.II. Blechnum to Nothochlaena.--vol.III. Ochropteris to Woodwardia, and Selaginella.
Resumo:
Mestrado em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL
Resumo:
Mestrado Vinifera Euromaster - Instituto Superior de Agronomia - UL
Resumo:
Mestrado Vinifera Euromaster - Instituto Superior de Agronomia - UL
Resumo:
Soils are the largest sinks of carbon in terrestrial ecosystems. Soil organic carbon is important for ecosystem balance as it supplies plants with nutrients, maintains soil structure, and helps control the exchange of CO2 with the atmosphere. The processes in which wood carbon is stabilized and destabilized in forest soils is still not understood completely. This study attempts to measure early wood decomposition by different fungal communities (inoculation with pure colonies of brown or white rot, or the original microbial community) under various interacting treatments: wood quality (wood from +CO2, +CO2+O3, or ambient atmosphere Aspen-FACE treatments from Rhinelander, WI), temperature (ambient or warmed), soil texture (loamy or sandy textured soil), and wood location (plot surface or buried 15cm below surface). Control plots with no wood chips added were also monitored throughout the study. By using isotopically-labelled wood chips from the Aspen-FACE experiment, we are able to track wood-derived carbon losses as soil CO2 efflux and as leached dissolved organic carbon (DOC). We analyzed soil water for chemical characteristics such as, total phenolics, SUVA254, humification, and molecular size. Wood chip samples were also analyzed for their proportion of lignin:carbohydrates using FTIR analysis at three time intervals throughout 12 months of decomposition. After two years of measurements, the average total soil CO2 efflux rates were significantly different depending on wood location, temperature, and wood quality. The wood-derived portion soil CO2 efflux also varied significantly by wood location, temperature, and wood quality. The average total DOC and the wood-derived portion of DOC differed between inoculation treatments, wood location, and temperature. Soil water chemical characteristics varied significantly by inoculation treatments, temperature, and wood quality. After 12 months of decomposition the proportion of lignin:carbohydrates varied significantly by inoculation treatment, with white rot having the only average proportional decrease in lignin:carbohydrates. Both soil CO2 efflux and DOC losses indicate that wood location is important. Carbon losses were greater from surface wood chips compared with buried wood chips, implying the importance of buried wood for total ecosystem carbon stabilization. Treatments associated with climate change also had an effect on the level of decomposition. DOC losses, soil water characteristics, and FTIR data demonstrate the importance of fungal community on the degree of decomposition and the resulting byproducts found throughout the soil.
Resumo:
Paraffin has been used as surface protection of wood throughout the ages but its use for impregnation to improve wood resistance to biodegradation is recent. This study determined the main improvements on wood properties with paraffin impregnation. Healthy Pinus pinaster Ait. wood was impregnated with paraffin at different levels using a hot–cold process. Weight gain, equilibrium moisture content and dimensional stability (ASE) at 35 and 65 % relative humidity, termite durability against Reticulitermes grassei (Clément), bending strength, bending stiffness (MOE) and Janka hardness were determined. Density increased from 0.57 to 0.99, ASE ranged between 38–96 % and 16–71 % for 35 and 65 % relative humidity, respectively. Equilibrium moisture content decreased from 9.9 and 12.0 % to 0.8 and 3.6 % for 35 and 65 % relative humidity. Termite durability improved from level 4 to level 3 of attack, and higher termite mortality was found in treated wood (52 % against 17 %). Bending strength (MOR) increased with paraffin weight gain, reaching a 39 % increase. MOE also increased by about 13 % for wood with a weight gain around 80 %. Janka hardness increased significantly reaching about 40 % for wood with 80 % weight gain. Paraffin impregnated wood has improved properties with regard to equilibrium moisture content, dimensional stability and density, bending strength and Janka hardness, and resistance against termites.
Resumo:
This work intended to give a perspective of industrial wood protection in Portugal. A survey was made of the companies treating wood mainly for use classes 3 and 4 such as autoclave treatments with biocides and wood modification procedures. Currently there are 23 companies with 33 production plants with an autoclave installed for wood preservation by impregnation. There are also two companies producing modified wood by thermal treatment. Most of the plants are located in the central and northern regions of Portugal. The leading preservation chemicals used in Portugal are Tanalith E and Celcure brands. The main wood species used in all companies is Pinus pinaster from local producers. The products commercialized by the treating companies are diverse: pre-fabricated houses, garden furniture and playgrounds, decks, poles, stakes, and sawn wood. Modified wood producers sell mostly decks and cladding. Considerable changes are expected in the next few years due to the requirements of European Directives and the typical constraints of the Portuguese market.
Resumo:
The aim of present work was to investigate the phenolic and volatile composition of cherry, acacia, and oak (from different species) wood chips. By the use of HPLC-DAD 18 different phenolic compounds were detected and quantified while for volatile composition, 33 different compounds were detected by GC-MS. In general, wood samples from oak species showed the higher number of phenolic compounds detected, while cherry wood samples showed the lowest levels. In addition, some individual phenolic compounds were detected, specifically in some wood samples, such as robinetin in acacia woods and naringenin in cherry wood. For volatile composition, cherry wood chips samples showed the lowest volatile composition followed by increasing order by acacia, French, Portuguese and American wood chip samples. Oak wood chip samples from American species showed the highest volatile content, as a result of high levels of several specific compounds (furfural, 5-methyfurfural, β-methyl-γ-octalactones, guaiacol, vanillin and siringaldehyde).
Resumo:
Companies operating in the wood processing industry need to increase their productivity by implementing automation technologies in their production systems. An increasing global competition and rising raw material prizes challenge their competitiveness. Yet, too extensive automation brings risks such as a deterioration in situation awareness and operator deskilling. The concept of Levels of Automation is generally seen as means to achieve a balanced task allocation between the operators’ skills and competences and the need for automation technology relieving the humans from repetitive or hazardous work activities. The aim of this thesis was to examine to what extent existing methods for assessing Levels of Automation in production processes are applicable in the wood processing industry when focusing on an improved competitiveness of production systems. This was done by answering the following research questions (RQ): RQ1: What method is most appropriate to be applied with measuring Levels of Automation in the wood processing industry? RQ2: How can the measurement of Levels of Automation contribute to an improved competitiveness of the wood processing industry’s production processes? Literature reviews were used to identify the main characteristics of the wood processing industry affecting its automation potential and appropriate assessment methods for Levels of Automation in order to answer RQ1. When selecting the most suitable method, factors like the relevance to the target industry, application complexity or operational level the method is penetrating were important. The DYNAMO++ method, which covers both a rather quantitative technical-physical and a more qualitative social-cognitive dimension, was seen as most appropriate when taking into account these factors. To answer RQ 2, a case study was undertaken at a major Swedish manufacturer of interior wood products to point out paths how the measurement of Levels of Automation contributes to an improved competitiveness of the wood processing industry. The focus was on the task level on shop floor and concrete improvement suggestions were elaborated after applying the measurement method for Levels of Automation. Main aspects considered for generalization were enhancements regarding ergonomics in process design and cognitive support tools for shop-floor personnel through task standardization. Furthermore, difficulties regarding the automation of grading and sorting processes due to the heterogeneous material properties of wood argue for a suitable arrangement of human intervention options in terms of work task allocation. The application of a modified version of DYNAMO++ reveals its pros and cons during a case study which covers a high operator involvement in the improvement process and the distinct predisposition of DYNAMO++ to be applied in an assembly system.