889 resultados para Wireless power transmission


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes an approach to optimally allocate multiple types of flexible AC transmission system (FACTS) devices in market-based power systems with wind generation. The main objective is to maximise profit by minimising device investment cost, and the system's operating cost considering both normal conditions and possible contingencies. The proposed method accurately evaluates the long-term costs and benefits gained by FACTS devices (FDs) installation to solve a large-scale optimisation problem. The objective implies maximising social welfare as well as minimising compensations paid for generation re-scheduling and load shedding. Many technical operation constraints and uncertainties are included in problem formulation. The overall problem is solved using both particle swarm optimisations for attaining optimal FDs allocation as main problem and optimal power flow as sub-optimisation problem. The effectiveness of the proposed approach is demonstrated on modified IEEE 14-bus test system and IEEE 118-bus test system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we study the achievable ergodic sum-rate of multiuser multiple-input multiple-output downlink systems in Rician fading channels. We first derive a lower bound on the average signal-to-leakage-and-noise ratio by using the Mullen’s inequality, and then use it to analyze the effect of channel mean information on the achievable ergodic sum-rate. A novel statistical-eigenmode space-division multiple-access (SESDMA) downlink transmission scheme is then proposed. For this scheme, we derive an exact analytical closed-form expression for the achievable ergodic rate and present tractable tight upper and lower bounds. Based on our analysis, we gain valuable insights into the system parameters, such as the number of transmit antennas, the signal-to-noise ratio (SNR) and Rician K-factor on the system sum-rate. Results show that the sum-rate converges to a saturation value in the high SNR regime and tends to a lower limit for the low Rician K-factor case. In addition, we compare the achievable ergodic sum-rate between SE-SDMA and zeroforcing beamforming with perfect channel state information at the base station. Our results reveal that the rate gap tends to zero in the high Rician K-factor regime. Finally, numerical results are presented to validate our analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this brief, a hybrid filter algorithm is developed to deal with the state estimation (SE) problem for power systems by taking into account the impact from the phasor measurement units (PMUs). Our aim is to include PMU measurements when designing the dynamic state estimators for power systems with traditional measurements. Also, as data dropouts inevitably occur in the transmission channels of traditional measurements from the meters to the control center, the missing measurement phenomenon is also tackled in the state estimator design. In the framework of extended Kalman filter (EKF) algorithm, the PMU measurements are treated as inequality constraints on the states with the aid of the statistical criterion, and then the addressed SE problem becomes a constrained optimization one based on the probability-maximization method. The resulting constrained optimization problem is then solved using the particle swarm optimization algorithm together with the penalty function approach. The proposed algorithm is applied to estimate the states of the power systems with both traditional and PMU measurements in the presence of probabilistic data missing phenomenon. Extensive simulations are carried out on the IEEE 14-bus test system and it is shown that the proposed algorithm gives much improved estimation performances over the traditional EKF method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important factors that affects the performance of energy detection (ED) is the fading channel between the wireless nodes. This article investigates the performance of ED-based spectrum sensing, for cognitive radio (CR), over two-wave with diffuse power (TWDP) fading channels. The TWDP fading model characterizes a variety of fading channels, including well-known canonical fading distributions, such as Rayleigh and Rician, as well as worse than Rayleigh fading conditions modeled by the two-ray fading model. Novel analytic expressions for the average probability of detection over TWDP fading that account for single-user and cooperative spectrum sensing as well as square law selection diversity reception are derived. These expressions are used to analyze the behavior of ED-based spectrum sensing over moderate, severe and extreme fading conditions, and to investigate the use of cooperation and diversity as a means of mitigating the fading effects. Our results indicate that TWDP fading conditions can significantly degrade the sensing performance; however, it is shown that detection performance can be improved when cooperation and diversity are employed. The presented outcomes enable us to identify the limits of ED-based spectrum sensing and quantify the trade-offs between detection performance and energy efficiency for cognitive radio systems deployed within confined environments such as in-vehicular wireless networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O tema principal desta tese é o problema de cancelamento de interferência para sistemas multi-utilizador, com antenas distribuídas. Como tal, ao iniciar, uma visão geral das principais propriedades de um sistema de antenas distribuídas é apresentada. Esta descrição inclui o estudo analítico do impacto da ligação, dos utilizadores do sistema, a mais antenas distribuídas. Durante essa análise é demonstrado que a propriedade mais importante do sistema para obtenção do ganho máximo, através da ligação de mais antenas de transmissão, é a simetria espacial e que os utilizadores nas fronteiras das células são os mais bene ciados. Tais resultados são comprovados através de simulação. O problema de cancelamento de interferência multi-utilizador é considerado tanto para o caso unidimensional (i.e. sem codi cação) como para o multidimensional (i.e. com codi cação). Para o caso unidimensional um algoritmo de pré-codi cação não-linear é proposto e avaliado, tendo como objectivo a minimização da taxa de erro de bit. Tanto o caso de portadora única como o de multipla-portadora são abordados, bem como o cenário de antenas colocadas e distribuidas. É demonstrado que o esquema proposto pode ser visto como uma extensão do bem conhecido esquema de zeros forçados, cuja desempenho é provado ser um limite inferior para o esquema generalizado. O algoritmo é avaliado, para diferentes cenários, através de simulação, a qual indica desempenho perto do óptimo, com baixa complexidade. Para o caso multi-dimensional um esquema para efectuar "dirty paper coding" binário, tendo como base códigos de dupla camada é proposto. No desenvolvimento deste esquema, a compressão com perdas de informação, é considerada como um subproblema. Resultados de simulação indicam transmissão dedigna proxima do limite de Shannon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação Multicélula é um tópico de investigação em rápido crescimento e uma solução promissora para controlar a interferência entre células em sistemas celulares, melhorando a equidade do sistema e aumentando a sua capacidade. Esta tecnologia já está em estudo no LTEAdvanced sob o conceito de coordenação multiponto (COMP). Existem várias abordagens sobre coordenação multicélula, dependendo da quantidade e do tipo de informação partilhada pelas estações base, através da rede de suporte (backhaul network), e do local onde essa informação é processada, i.e., numa unidade de processamento central ou de uma forma distribuída em cada estação base. Nesta tese, são propostas técnicas de pré-codificação e alocação de potência considerando várias estratégias: centralizada, todo o processamento é feito na unidade de processamento central; semidistribuída, neste caso apenas parte do processamento é executado na unidade de processamento central, nomeadamente a potência alocada a cada utilizador servido por cada estação base; e distribuída em que o processamento é feito localmente em cada estação base. Os esquemas propostos são projectados em duas fases: primeiro são propostas soluções de pré-codificação para mitigar ou eliminar a interferência entre células, de seguida o sistema é melhorado através do desenvolvimento de vários esquemas de alocação de potência. São propostas três esquemas de alocação de potência centralizada condicionada a cada estação base e com diferentes relações entre desempenho e complexidade. São também derivados esquemas de alocação distribuídos, assumindo que um sistema multicelular pode ser visto como a sobreposição de vários sistemas com uma única célula. Com base neste conceito foi definido uma taxa de erro média virtual para cada um desses sistemas de célula única que compõem o sistema multicelular, permitindo assim projectar esquemas de alocação de potência completamente distribuídos. Todos os esquemas propostos foram avaliados em cenários realistas, bastante próximos dos considerados no LTE. Os resultados mostram que os esquemas propostos são eficientes a remover a interferência entre células e que o desempenho das técnicas de alocação de potência propostas é claramente superior ao caso de não alocação de potência. O desempenho dos sistemas completamente distribuídos é inferior aos baseados num processamento centralizado, mas em contrapartida podem ser usados em sistemas em que a rede de suporte não permita a troca de grandes quantidades de informação.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, a new paradigm for communication called cooperative communications has been proposed for which initial information theoretic studies have shown the potential for improvements in capacity over traditional multi-hop wireless networks. Extensive research has been done to mitigate the impact of fading in wireless networks, being mostly focused on Multiple-Input Multiple-Output (MIMO) systems. Recently, cooperative relaying techniques have been investigated to increase the performance of wireless systems by using diversity created by different single antenna devices, aiming to reach the same level of performance of MIMO systems with low cost devices. Cooperative communication is a promising method to achieve high spectrum efficiency and improve transmission capacity for wireless networks. Cooperative communications is the general idea of pooling the resources of distributed nodes to improve the overall performance of a wireless network. In cooperative networks the nodes cooperate to help each other. A cooperative node offering help is acting like a middle man or proxy and can convey messages from source to destination. Cooperative communication involves exploiting the broadcast nature of the wireless medium to form virtual antenna arrays out of independent singleantenna network nodes for transmission. This research aims at contributing to the field of cooperative wireless networks. The focus of this research is on the relay-based Medium Access Control (MAC) protocol. Specifically, I provide a framework for cooperative relaying called RelaySpot which comprises on opportunistic relay selection, cooperative relay scheduling and relay switching. RelaySpot-based solutions are expected to minimize signaling exchange, remove estimation of channel conditions, and improve the utilization of spatial diversity, minimizing outage and increasing reliability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible radio transmitters based on the Software-Defined Radio (SDR) concept are gaining an increased research importance due to the unparalleled proliferation of new wireless standards operating at different frequencies, using dissimilar coding and modulation schemes, and targeted for different ends. In this new wireless communications paradigm, the physical layer of the radio transmitter must be able to support the simultaneous transmission of multi-band, multi-rate, multi-standard signals, which in practice is very hard or very inefficient to implement using conventional approaches. Nevertheless, the last developments in this field include novel all-digital transmitter architectures where the radio datapath is digital from the baseband up to the RF stage. Such concept has inherent high flexibility and poses an important step towards the development of SDR-based transmitters. However, the truth is that implementing such radio for a real world communications scenario is a challenging task, where a few key limitations are still preventing a wider adoption of this concept. This thesis aims exactly to address some of these limitations by proposing and implementing innovative all-digital transmitter architectures with inherent higher flexibility and integration, and where improving important figures of merit, such as coding efficiency, signal-to-noise ratio, usable bandwidth and in-band and out-of-band noise will also be addressed. In the first part of this thesis, the concept of transmitting RF data using an entirely digital approach based on pulsed modulation is introduced. A comparison between several implementation technologies is also presented, allowing to state that FPGAs provide an interesting compromise between performance, power efficiency and flexibility, thus making them an interesting choice as an enabling technology for pulse-based all-digital transmitters. Following this discussion, the fundamental concepts inherent to pulsed modulators, its key advantages, main limitations and typical enhancements suitable for all-digital transmitters are also presented. The recent advances regarding the two most common classes of pulse modulated transmitters, namely the RF and the baseband-level are introduced, along with several examples of state-of-the-art architectures found on the literature. The core of this dissertation containing the main developments achieved during this PhD work is then presented and discussed. The first key contribution to the state-of-the-art presented here consists in the development of a novel ΣΔ-based all-digital transmitter architecture capable of multiband and multi-standard data transmission in a very flexible and integrated way, where the pulsed RF output operating in the microwave frequency range is generated inside a single FPGA device. A fundamental contribution regarding the simultaneous transmission of multiple RF signals is then introduced by presenting and describing novel all-digital transmitter architectures that take advantage of multi-gigabit data serializers available on current high-end FPGAs in order to transmit in a time-interleaved approach multiple independent RF carriers. Further improvements in this design approach allowed to provide a two-stage up-conversion transmitter architecture enabling the fine frequency tuning of concurrent multichannel multi-standard signals. Finally, further improvements regarding two key limitations inherent to current all-digital transmitter approaches are then addressed, namely the poor coding efficiency and the combined high quality factor and tunability requirements of the RF output filter. The followed design approach based on poliphase multipath circuits allowed to create a new FPGA-embedded agile transmitter architecture that significantly improves important figures of merit, such as coding efficiency and SNR, while maintains the high flexibility that is required for supporting multichannel multimode data transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tese descreve uma framework de trabalho assente no paradigma multi-camada para analisar, modelar, projectar e optimizar sistemas de comunicação. Nela se explora uma nova perspectiva acerca da camada física que nasce das relações entre a teoria de informação, estimação, métodos probabilísticos, teoria da comunicação e codificação. Esta framework conduz a métodos de projecto para a próxima geração de sistemas de comunicação de alto débito. Além disso, a tese explora várias técnicas de camada de acesso com base na relação entre atraso e débito para o projeto de redes sem fio tolerantes a atrasos. Alguns resultados fundamentais sobre a interação entre a teoria da informação e teoria da estimação conduzem a propostas de um paradigma alternativo para a análise, projecto e optimização de sistemas de comunicação. Com base em estudos sobre a relação entre a informação recíproca e MMSE, a abordagem descrita na tese permite ultrapassar, de forma inovadora, as dificuldades inerentes à optimização das taxas de transmissão de informação confiáveis em sistemas de comunicação, e permite a exploração da atribuição óptima de potência e estruturas óptimas de pre-codificação para diferentes modelos de canal: com fios, sem fios e ópticos. A tese aborda também o problema do atraso, numa tentativa de responder a questões levantadas pela enorme procura de débitos elevados em sistemas de comunicação. Isso é feito através da proposta de novos modelos para sistemas com codificação de rede (network coding) em camadas acima da sua camada física. Em particular, aborda-se a utilização de sistemas de codificação em rede para canais que variam no tempo e são sensíveis a atrasos. Isso foi demonstrado através da proposta de um novo modelo e esquema adaptativo, cujos algoritmos foram aplicados a sistemas sem fios com desvanecimento (fading) complexo, de que são exemplos os sistemas de comunicação via satélite. A tese aborda ainda o uso de sistemas de codificação de rede em cenários de transferência (handover) exigentes. Isso é feito através da proposta de novos modelos de transmissão WiFi IEEE 801.11 MAC, que são comparados com codificação de rede, e que se demonstram possibilitar transferência sem descontinuidades. Pode assim dizer-se que esta tese, através de trabalho de análise e de propostas suportadas por simulações, defende que na concepção de sistemas de comunicação se devem considerar estratégias de transmissão e codificação que sejam não só próximas da capacidade dos canais, mas também tolerantes a atrasos, e que tais estratégias têm de ser concebidas tendo em vista características do canal e a camada física.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future emerging market trends head towards positioning based services placing a new perspective on the way we obtain and exploit positioning information. On one hand, innovations in information technology and wireless communication systems enabled the development of numerous location based applications such as vehicle navigation and tracking, sensor networks applications, home automation, asset management, security and context aware location services. On the other hand, wireless networks themselves may bene t from localization information to improve the performances of di erent network layers. Location based routing, synchronization, interference cancellation are prime examples of applications where location information can be useful. Typical positioning solutions rely on measurements and exploitation of distance dependent signal metrics, such as the received signal strength, time of arrival or angle of arrival. They are cheaper and easier to implement than the dedicated positioning systems based on ngerprinting, but at the cost of accuracy. Therefore intelligent localization algorithms and signal processing techniques have to be applied to mitigate the lack of accuracy in distance estimates. Cooperation between nodes is used in cases where conventional positioning techniques do not perform well due to lack of existing infrastructure, or obstructed indoor environment. The objective is to concentrate on hybrid architecture where some nodes have points of attachment to an infrastructure, and simultaneously are interconnected via short-range ad hoc links. The availability of more capable handsets enables more innovative scenarios that take advantage of multiple radio access networks as well as peer-to-peer links for positioning. Link selection is used to optimize the tradeo between the power consumption of participating nodes and the quality of target localization. The Geometric Dilution of Precision and the Cramer-Rao Lower Bound can be used as criteria for choosing the appropriate set of anchor nodes and corresponding measurements before attempting location estimation itself. This work analyzes the existing solutions for node selection in order to improve localization performance, and proposes a novel method based on utility functions. The proposed method is then extended to mobile and heterogeneous environments. Simulations have been carried out, as well as evaluation with real measurement data. In addition, some speci c cases have been considered, such as localization in ill-conditioned scenarios and the use of negative information. The proposed approaches have shown to enhance estimation accuracy, whilst signi cantly reducing complexity, power consumption and signalling overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuous demand for highly efficient wireless transmitter systems has triggered an increased interest in switching mode techniques to handle the required power amplification. The RF carrier amplitude-burst transmitter, i.e. a wireless transmitter chain where a phase-modulated carrier is modulated in amplitude in an on-off mode, according to some prescribed envelope-to-time conversion, such as pulse-width or sigma-delta modulation, constitutes a promising architecture capable of efficiently transmitting signals of highly demanding complex modulation schemes. However, the tested practical implementations present results that are way behind the theoretically advanced promises (perfect linearity and efficiency). My original contribution to knowledge presented in this thesis is the first thorough study and model of the power efficiency and linearity characteristics that can be actually achieved with this architecture. The analysis starts with a brief revision of the theoretical idealized behavior of these switched-mode amplifier systems, followed by the study of the many sources of impairments that appear when the real system is implemented. In particular, a special attention is paid to the dynamic load modulation caused by the often ignored interaction between the narrowband signal reconstruction filter and the usual single-ended switched-mode power amplifier, which, among many other performance impairments, forces a two transistor implementation. The performance of this architecture is clearly explained based on the presented theory, which is supported by simulations and corresponding measured results of a fully working implementation. The drawn conclusions allow the development of a set of design rules for future improvements, one of which is proposed and verified in this thesis. It suggests a significant modification to this traditional architecture, where now the phase modulated carrier is always on – and thus allowing a single transistor implementation – and the amplitude is impressed into the carrier phase according to a bi-phase code.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the impact of several antenna chices on the radio transmission performance within a cellular Mobile Broaband System (MBS) currently under research in Europe. Several antenna types are considered, namely switchable-beam antennas and adaptive antennas employing a phased array approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MC-CDMA (MultiCarrier Code Division Multiple Access), currently regarded as a promissing multiple access scheme for broadband communications, is known to combine the advantages of an OFDM-based (Orthogonal Frequency Division Multiplexing), CP-assisted (Cyclic Prefix) block transmission with those of CDMA systems. Recently, it was recognised that DS-CDMA (Direct Sequence) implementations can also take advantage of the beneficts of the CP-assisted block transmission approach, therefore enabling an efficient use of FFT-based (Fast Fourier Transform), chip level FDE (Frequency- Domain Equalisation) techniques. In this paper we consider the use of IB-DFE (Iterative Block Decision Feedback Equalisation) FDE techniques within both CP-assisted MC-CDMA systems with frequency-domain spreading and DS-CDMA systems. Our simulation results show that an IB-DFE receiver with moderate complexity is suitable in both cases, with excellent performances that can be close to the single-code matched filter bound (especially for the CP-assisted DSCDMA alternative), even with full code usage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider low-PMEPR (Peak-to-Mean Envelope Power Ratio) MC-CDMA (Multicarrier Coded Division Multiple Access) schemes. We develop frequencydomain turbo equalizers combined with an iterative estimation and cancellation of nonlinear distortion effects. Our receivers have relatively low complexity, since they allow FFT-based (Fast Fourier Transform) implementations. The proposed turbo receivers allow significant performance improvements at low and moderate SNR (Signal-to-Noise Ratio), even when a low-PMEPR MC-CDMA transmission is intended.