774 resultados para Wasp Venoms
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen that colonizes the gut mucosa via attaching and effacing (A/E) lesions; A/E lesion formation in vivo and ex vivo is dependent on the type III secretion system (T3SS) effector Tir. Infection of cultured cells by EHEC leads to induction of localized actin polymerization, which is dependent on Tir and a second T3SS effector protein, TccP, also known as EspF(U). Recently, cortactin was shown to bind both the N terminus of Tir and TccP via its SH3 domain and to play a role in EHEC-triggered actin polymerization in vitro. In this study, we investigated the recruitment of cortactin to the site of EHEC adhesion during infection of in vitro-cultured cells and mucosal surfaces ex vivo (using human terminal ileal in vitro organ cultures [IVOC]). We have shown that cortactin is recruited to the site of EHEC adhesion in vitro downstream of TccP and N-WASP. Deletion of the entire N terminus of Tir or replacing the N-terminal polyproline region with alanines did not abrogate actin polymerization or cortactin recruitment. In contrast, recruitment of cortactin to the site of EHEC adhesion in IVOC is TccP independent. These results imply that cortactin is recruited to the site of EHEC adhesion in vitro and ex vivo by different mechanisms and suggest that cortactin might have a role during EHEC infection of mucosal surfaces.
Resumo:
Typical enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) employ either Nck, TccP/TccP2, or Nck and TccP/TccP2 pathways to activate the neuronal Wiskott-Aldrich syndrome protein (N-WASP) and to trigger actin polymerization in cultured cells. This phenotype is used as a marker for the pathogenic potential of EPEC and EHEC strains. In this paper we report that EPEC O125:H6, which represents a large category of strains, lacks the ability to utilize either Nck or TccP/TccP2 and hence triggers actin polymerization in vitro only inefficiently. However, we show that infection of human intestinal biopsies with EPEC O125:H6 results in formation of typical attaching and effacing lesions. Expression of TccP in EPEC O125:H6, which harbors an EHEC O157-like Tir, resulted in efficient actin polymerization in vitro and enhanced colonization of human intestinal in vitro organ cultures with detectable N-WASP and electron-dense material at the site of bacterial adhesion. These results show the existence of a natural category of EPEC that colonizes the gut mucosa using Nck- and TccP-independent mechanisms. Importantly, the results highlight yet again the fact that conclusions made on the basis of in vitro cell culture models cannot be extrapolated wholesale to infection of mucosal surfaces and that the ability to induce actin polymerization on cultured cells should not be used as a definitive marker for EPEC and EHEC virulence.
Resumo:
Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30-300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging.
Resumo:
A 67-year-old woman developed severe edema of her right hand and forearm, for which she was treated with antibiotics, without benefit. The echography excluded a venous thrombosis. Subsequently, she referred a wasp sting before the development of the edema. Specific Hymenoptera venom immunoglobulin E (IgE) was found to be positive for paper wasp and yellow jacket. A large local reaction (LLR) was diagnosed due to the hymenoptera sting. Self-injectable epinephrine was prescribed for possible, though unlikely, systemic reactions following hymenoptera stings.
Resumo:
Most eukaryotic cell motility relies on plasma membrane protrusions, which depend on the actin cytoskeleton and its tight regulation. The SCAR/WAVE complex, a pentameric assembly comprising SCAR/WAVE, Nap1, CYFIP/Pir121, Abi and HSPC300, is a key driver of actin-based protrusions such as pseudopods. SCAR/WAVE is thought to activate the Arp2/3 complex, a crucial actin nucleator, after being itself activated by upstream signals such as active Rac1. Despite recent progress on the study of the SCAR/WAVE complex, its regulation is still incompletely understood, with Nap1’s role being particularly enigmatic. Upon screening for potential Nap1 binding partners in the social amoeba Dictyostelium discoideum – a well established model organism in the study of the actin cytoskeleton and cell motility – we found FAM49, a ~36 kDa protein of unknown function which is highly conserved in Metazoa (animals) and evolutionarily closer species such as D. discoideum. Interestingly, D. discoideum’s FAM49 and its homologs contain a DUF1394 domain, which is also predicted in CYFIP/Pir121 proteins and most likely involved in their direct binding to active Rac1, which in turn contributes to SCAR/WAVE’s activation. FAM49’s unknown role, apparent high degree of conservation and potential connections to SCAR/WAVE and Rac1 persuaded us to start investigating its function and biological relevance in D. discoideum, leading to the work presented in this thesis. Several pieces of our data collectively support a function for FAM49 in modulating the protrusive behaviour, and ultimately motility, of D. discoideum cells, as well as a regulatory link between FAM49 and Rac1. FAM49’s involvement in protrusion regulation was first hinted at by our observation that GFP-tagged FAM49 is enriched in pseudopods. The possibility of a link with Rac1 was then strengthened by two additional observations: first, pseudopodial GFP-FAM49 is substantially co-enriched with active Rac, both showing fairly comparable spatio-temporal accumulation dynamics; second, when dominant-active (G12V) Rac1 is expressed in cells, it triggers the recruitment and persistent accumulation of GFP-FAM49 at the plasma membrane, where both become highly co-enriched. We subsequently determined that fam49 KO cells differ from wild-type cells in the way they protrude and move, as assessed in under-agarose chemotaxis assays. In particular, our data indicate that fam49 KO cells tend to display a lower degree of global protrusive activity, their protrusions extend more slowly and are less discrete, and the cells end up moving at lower speeds and with higher directional persistence. This phenotype was substantially rescued by FAM49 re-expression. While re-expressing FAM49 in fam49 KO cells we generated putative FAM49 overexpressor cells; compared to wild-type cells, they displayed atypically thin pseudopods and what seemed to be an excessively dynamic, and perhaps less coordinated, protrusive behaviour. Additional data in our study suggest that pseudopods made by fam49 KO cells are still driven by SCAR/WAVE, which is clearly not being replaced by WASP (as is now known to be the case in D. discoideum cells lacking a functional SCAR/WAVE complex). Nonetheless, the peculiar dynamics of those pseudopods imply that SCAR/WAVE’s activity is regulated differently when FAM49 is lost, though it remains to be determined how. This thesis is the first report of a dedicated study on FAM49 and lays the foundation for future research on it.