976 resultados para Ward, Jerod
Resumo:
One of the important temporal stages of radiation action in cellular systems is the chemical phase, where oxygen fixation reactions compete with chemical repair reactions involving reducing agents such as GSH. Using the gas explosion technique it is possible to follow the kinetics of these fast (> 1 ms) reactions in intact cells. We have compared the chemical repair kinetics of the oxygen-dependent free radical precursors leading to DNA single-strand and double-strand breaks, measured using filter elution techniques, with those leading to cell killing in V79 cells. The chemical repair rates for DNA dsb (670s-1 at pH 7.2 and 380s-1 at pH 9.6) and cell killing (530s-1) were similar. This is in agreement with the important role of DNA dsb in radiation induced cell lethality. The rate for DNA ssb precursors was significantly slower (210s-1). The difference in rate between DNA ssb and dsb precursors may be explained on the basis of a dsb free radical precursor consisting of a paired radical, one radical on each strand. The instantaneous probability of one or other of these radicals being chemically repaired and not proceeding to form a dsb will be twice that of a ssb radical precursor. This agrees well with the concept of locally multiply damaged sites (LMDS) produced from clusters of ionizations in DNA (Ward 1985).
Resumo:
A Pikea species attributed to Pikea californica Harvey has been established in England since at least 1967. Previously, this species was believed to occur only in Japan and Pacific North America. Comparative morphological studies on field-collected material and cultured isolates from England, California, and Japan and analysis of organellar DNA restriction fragment length polymorphisms, detected using labeled organellar DNA as a non-radioactive probe, showed that English Pikea is conspecific with P. californica from California. Both populations consist of dioecious gametophytes with heteromorphic life histories involving crustose tetrasporophytes; 96% of organellar DNA bands were shared between interoceanic samples. A second dioecious species of Pikea, P. pinnata Setchell In Collins, Holden et Setchell, grows sympatrically with P. californica near San Francisco but can be distinguished by softer texture, more regular branching pattern, and elongate cystocarpic axes. Pikea pinnata and P. californica samples shared 49-50% of organellar DNA bands, consistent with their being distinct species. Herbarium specimens of P. robusta Abbott resemble P. pinnata in some morphological features but axes are much wider; P. robusta may represent a further, strictly subtidal species but fertile material is unknown. Pikea thalli from Japan, previously attributed to P. californica and described here as Pikea yoshizakii sp. nov., are monoecious and show a strikingly different type of life history. After fertilization, gonimoblast filaments grow outward through the cortex and form tetrasporangial nemathecia; released tetraspores develop directly into erect thalli. Tetrasporoblastic life histories are characteristic of certain members of the Phyllophoraceae but were previously unknown in the Dumontiaceae. Japanese P. yoshizakii shared 55 and 56% of organellar DNA bands with P. californica and P. pinnata, respectively phylogenetic analysis indicated equally distant relationships to both species. Pikea yoshizakii or a closely similar species with the same life history occurs in southern California and Mexico.
Resumo:
Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TP L- 1 (0.018 mg TRP L- 1) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km- 2 to 4.6 km- 2 and 13.8 km- 2 to 17.2 km- 2 and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes.
Resumo:
Despite significant progress in the identification of genetic loci for age-related macular degeneration (AMD), not all of the heritability has been explained. To identify variants which contribute to the remaining genetic susceptibility, we performed the largest meta-analysis of genome-wide association studies to date for advanced AMD. We imputed 6 036 699 single-nucleotide polymorphisms with the 1000 Genomes Project reference genotypes on 2594 cases and 4134 controls with follow-up replication of top signals in 5640 cases and 52 174 controls. We identified two new common susceptibility alleles, rs1999930 on 6q21-q22.3 near FRK/COL10A1 [odds ratio (OR) 0.87; P = 1.1 × 10(-8)] and rs4711751 on 6p12 near VEGFA (OR 1.15; P = 8.7 × 10(-9)). In addition to the two novel loci, 10 previously reported loci in ARMS2/HTRA1 (rs10490924), CFH (rs1061170, and rs1410996), CFB (rs641153), C3 (rs2230199), C2 (rs9332739), CFI (rs10033900), LIPC (rs10468017), TIMP3 (rs9621532) and CETP (rs3764261) were confirmed with genome-wide significant signals in this large study. Loci in the recently reported genes ABCA1 and COL8A1 were also detected with suggestive evidence of association with advanced AMD. The novel variants identified in this study suggest that angiogenesis (VEGFA) and extracellular collagen matrix (FRK/COL10A1) pathways contribute to the development of advanced AMD.
Resumo:
Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-alpha-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu(173) or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB.
Resumo:
Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [S-35] guanosine 5'-(3-O-thio) triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp(3)-hybridized alpha-carbons preferentially activate FFA3, whereas ligands with sp(2)- or sp-hybridized alpha-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors.
Resumo:
Androgen withdrawal induces hypoxia in androgen-sensitive tissue; this is important as in the tumour microenvironment hypoxia is known to drive malignant progression. This study examined the time-dependent effect of androgen deprivation therapy (ADT) on tumour oxygenation and investigated the role of ADT-induced hypoxia on malignant progression in prostate tumours. LNCaP xenografted tumours were treated with anti-androgens and tumour oxygenation measured. Dorsal skin fold chambers (DSF) were used to image tumour vasculature in vivo. Quantitative PCR (QPCR) identified differential gene expression following treatment with bicalutamide. Bicalutamide and vehicle-only treated tumours were re-established in vitro and invasion and sensitivity to docetaxel were measured. Tumour growth delay was calculated following treatment with bicalutamide combined with the bioreductive drug AQ4N. Tumour oxygenation measurements showed a precipitate decrease following initiation of ADT. A clinically relevant dose of bicalutamide (2mg/kg/day) decreased tumour oxygenation by 45% within 24h, reaching a nadir of 0.09% oxygen (0.67±0.06 mmHg) by day 7; this persisted until day 14 when it increased up to day 28. Using DSF chambers, LNCaP tumours treated with bicalutamide showed loss of small vessels at days 7 and 14 with revascularization occurring by day 21. QPCR showed changes in gene expression consistent with the vascular changes and malignant progression. Cells from bicalutamide-treated tumours were more malignant than vehicle-treated controls. Combining bicalutamide with AQ4N (50mg/kg; single dose) caused greater tumour growth delay than bicalutamide alone. This study shows that bicalutamide-induced hypoxia selects for cells that show malignant progression; targeting hypoxic cells may provide greater clinical benefit.
Resumo:
The prevalence of multicore processors is bound to drive most kinds of software development towards parallel programming. To limit the difficulty and overhead of parallel software design and maintenance, it is crucial that parallel programming models allow an easy-to-understand, concise and dense representation of parallelism. Parallel programming models such as Cilk++ and Intel TBBs attempt to offer a better, higher-level abstraction for parallel programming than threads and locking synchronization. It is not straightforward, however, to express all patterns of parallelism in these models. Pipelines are an important parallel construct, although difficult to express in Cilk and TBBs in a straightfor- ward way, not without a verbose restructuring of the code. In this paper we demonstrate that pipeline parallelism can be easily and concisely expressed in a Cilk-like language, which we extend with input, output and input/output dependency types on procedure arguments, enforced at runtime by the scheduler. We evaluate our implementation on real applications and show that our Cilk-like scheduler, extended to track and enforce these dependencies has performance comparable to Cilk++.
Resumo:
There is renewed interest in rare-earth elements and gadolinium in particular for a range of studies in coupling physics and applications. However, it is still apparent that synthesis impacts understanding of the intrinsic magnetic properties of thin gadolinium films, particularly for thicknesses of topicality. We report studies on 50nm thick nanogranular polycrystalline gadolinium thin films on SiO2 wafers that demonstrate single-crystal like behavior. The maximum in-plane saturation magnetization at 4K was found to be 4pMS4K = (2.61±0.26)T with a coercivity of HC4K = (160±5)Oe. A maximum Curie point of TC = (293±2)K was measured via zero-field-cooled - field-cooled magnetization measurements in close agreement with values reported in bulk single crystals. Our measurements revealed magnetic transitions at T1 = (12±2)K (as deposited samples) and T2 = (22±2)K (depositions on heated substrates) possibly arising from the interaction of paramagnetic fcc grains with their ferromagnetic hcp counterparts.