944 resultados para WAKE FLOW CONTROL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.

(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.

(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Light-load blood flow restriction exercise (BFRE) may provide a novel training method to limit the effects of age-related muscle atrophy in older adults. Therefore, the purpose of this study was to compare the haemodynamic response to resistance and aerobic BFRE between young adults (YA; n = 11; 22 ± 1 years) and older adults (OA; n = 13; 69 ± 1 years). METHOD: On two occasions, participants completed BFRE or control exercise (CON). One occasion was leg press (LP; 20 % 1-RM) and the other was treadmill walking (TM; 4 km h(-1)). Haemodynamic responses (HR, [Formula: see text], SV and BP) were recorded during baseline and exercise. RESULT: At baseline, YA and OA were different for some haemodynamic parameters (e.g. BP, SV). The relative responses to BFRE were similar between YA and OA. Blood pressures increased more with BFRE, and also for LP over TM. [Formula: see text] increased similarly for BFRE and CON (in both LP and TM), but with elevated HR and reduced SV (TM only). CONCLUSION: While BFR conferred slightly greater haemodynamic stress than CON, this was lower for walking than leg-press exercise. Given similar response magnitudes between YA and OA, these data support aerobic exercise being a more appropriate BFRE for prescription in older adults that may contribute to limiting the effects of age-related muscle atrophy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrostatic Precipitators (ESP) are the most reliable and industrially used control devices to capture fine particles for reducing exhaust emission. Its efficiency is 99% or more. However, capturing submicron particles which are hazardous is still a problem as it involves complex flow phenomena and ESP design limitations. In this study, the effect of baffles on flow distribution inside the ESP is investigated computationally. Baffles are expected to increase the residence time of flue gas which helps to collect more particles into the collector plates, and hence increase the collection efficiency of an ESP. Besides, the placement of a baffle is likely to cause swirling of flue gas and hence sub-micron particles move towards the collector plate due to eccentric and electrostatic force. Therefore, the effects of position, shape and thickness of the baffles on collection efficiency which are also important for ESP design are reported in this study. The fluid flow distribution has been modelled using computational fluid dynamics (CFD) software Fluent and the result and outcome are presented and discussed. The result shows that baffles have significant influence on fluid flow pattern and the efficiency of ESP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate and timely traffic flow prediction is crucial to proactive traffic management and control in data-driven intelligent transportation systems (D2ITS), which has attracted great research interest in the last few years. In this paper, we propose a Spatial-Temporal Weighted K-Nearest Neighbor model, named STW-KNN, in a general MapReduce framework of distributed modeling on a Hadoop platform, to enhance the accuracy and efficiency of short-term traffic flow forecasting. More specifically, STW-KNN considers the spatial-temporal correlation and weight of traffic flow with trend adjustment features, to optimize the search mechanisms containing state vector, proximity measure, prediction function, and K selection. urthermore, STW-KNN is implemented on a widely adopted Hadoop distributed computing platform with the MapReduce parallel processing paradigm, for parallel prediction of traffic flow in real time. inally, with extensive experiments on real-world big taxi trajectory data, STW-KNN is compared with the state-of-the-art prediction models including conventional K-Nearest Neighbor (KNN), Artificial Neural Networks (ANNs), Naïve Bayes (NB), Random orest (R), and C4.. The results demonstrate that the proposed model is superior to existing models on accuracy by decreasing the mean absolute percentage error (MAPE) value more than 11.9% only in time domain and even achieves 89.71% accuracy improvement with the MAPEs of between 4% and 6.% in both space and time domains, and also significantly improves the efficiency and scalability of short-term traffic flow forecasting over existing approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Driven by the ever-growing expectation of ubiquitous connectivity and the widespread adoption of IEEE 802.11 networks, it is not only highly demanded but also entirely possible for in-motion vehicles to establish convenient Internet access to roadside WiFi access points (APs) than ever before, which is referred to as Drive-Thru Internet. The performance of Drive-Thru Internet, however, would suffer from the high vehicle mobility, severe channel contentions, and instinct issues of the IEEE 802.11 MAC as it was originally designed for static scenarios. As an effort to address these problems, in this paper, we develop a unified analytical framework to evaluate the performance of Drive-Thru Internet, which can accommodate various vehicular traffic flow states, and to be compatible with IEEE 802.11a/b/g networks with a distributed coordination function (DCF). We first develop the mathematical analysis to evaluate the mean saturated throughput of vehicles and the transmitted data volume of a vehicle per drive-thru. We show that the throughput performance of Drive-Thru Internet can be enhanced by selecting an optimal transmission region within an AP's coverage for the coordinated medium sharing of all vehicles. We then develop a spatial access control management approach accordingly, which ensures the airtime fairness for medium sharing and boosts the throughput performance of Drive-Thru Internet in a practical, efficient, and distributed manner. Simulation results show that our optimal access control management approach can efficiently work in IEEE 802.11b and 802.11g networks. The maximal transmitted data volume per drive-thru can be enhanced by 113.1% and 59.5% for IEEE 802.11b and IEEE 802.11g networks with a DCF, respectively, compared with the normal IEEE 802.11 medium access with a DCF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of the current dissertation is to study qualitatively the underlying physics of vortex-shedding and wake dynamics in long aspect-ratio aerodynamics in incompressible viscous flow through the use of the KLE method. We carried out a long series of numerical experiments in the cases of flow around the cylinder at low Reynolds numbers. The study of flow at low Reynolds numbers provides an insight in the fluid physics and also plays a critical role when applying to stalled turbine rotors. Many of the conclusions about the qualitative nature of the physical mechanisms characterizing vortex formation, shedding and further interaction analyzed here at low Re could be extended to other Re regimes and help to understand the separation of the boundary layers in airfoils and other aerodynamic surfaces. In the long run, it aims to provide a better understanding of the complex multi-physics problems involving fluid-structure-control interaction through improved mathematical computational models of the multi-physics process. Besides the scientific conclusions produced, the research work on streamlined and bluff-body condition will also serve as a valuable guide for the future design of blade aerodynamics and the placement of wind turbines and hydrakinetic turbines, increasing the efficiency in the use of expensive workforce, supplies, and infrastructure. After the introductory section describing the main fields of application of wind power and hydrokinetic turbines, we describe the main features and theoretical background of the numerical method used here. Then, we present the analysis of the numerical experimentation results for the oscillatory regime right before the onset of vortex shedding for circular cylinders. We verified the wake length of the closed near-wake behind the cylinder and analysed the decay of the wake at the wake formation region, and then studied the St-Re relationship at the Reynolds numbers before the wake sheds compared to the experimental data. We found a theoretical model that describes the time evolution of the amplitude of fluctuations in the vorticity field on the twin vortex wake, which accurately matches the numerical results in terms of the frequency of the oscillation and rate of decay. We also proposed a model based on an analog circuit that is able to interpret the concerning flow by reducing the number of degrees of freedom. It follows the idea of the non-linear oscillator and resembles the dynamics mechanism of the closed near-wake with a common configured sine wave oscillator. This low-dimensional circuital model may also help to understand the underlying physical mechanisms, related to vorticity transport, that give origin to those oscillations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-:τ: explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-:τ: environments.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To find examples of effecient locomotion and manoeuvrability, one need only turn to the elegant solutions natural flyers and swimmers have converged upon. This dissertation is specifically motivated by processes of evolutionary convergence, which have led to the propulsors and body shapes in nature that exhibit strong geometric collapse over diverse scales. These body features are abstracted in the studies presented herein using low-aspect-ratio at plates and a three-dimensional body of revolution (a sphere). The highly-separated vortical wakes that develop during accelerations are systematically characterized as a function of planform shape, aspect ratio, Reynolds number, and initial boundary conditions. To this end, force measurements and time-resolved (planar) particle image velocimetry have been used throughout to quantify the instantaneous forces and vortex evolution in the wake of the bluff bodies. During rectilinear motions, the wake development for the flat plates is primarily dependent on plate aspect ratio, with edge discontinuities and curvature playing only a secondary role. Furthermore, the axisymmetric case, i.e. the circular plate, shows strong sensitivity to Reynolds number, while this sensitivity quickly diminishes with increasing aspect ratio. For rotational motions, global insensitivity to plate aspect ratio has been observed. For the sphere, it has been shown that accelerations play an important role in the mitigation of flow separation. These results - expounded upon in this dissertation - have begun to shed light on the specific vortex dynamics that may be coopted by flying and swimming species of all shapes and sizes towards efficient locomotion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A continuous process strategy has been developed for the preparation of α-thio-β chloroacrylamides, a class of highly versatile synthetic intermediates. Flow platforms to generate the α-chloroamide and α-thioamide precursors were successfully adopted, progressing from the previously employed batch chemistry, and in both instances afford a readily scalable methodology. The implementation of the key α-thio-β-chloroacrylamide casade as a continuous flow reaction on a multi-gram scale is described, while the tuneable nature of the cascade, facilitated by continuous processing, is highlighted by selective generation of established intermediates and byproducts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a nonlinear adaptive backstepping controlleris designed to control the bidirectional power flow (charging/discharging) of battery energy storage systems (BESSs) in a DCmicrogrid under different operating conditions. The controller isdesigned in such a manner that the BESSs can store the excess energyfrom the renewable energy sources (RESs) in a DC microgrid aftersatisfying the load demand and also feeding back the stored energyto the load when RESs are not sufficient. The proposed controller isalso designed to maintain a constant voltage at the DC bus, whereall components of DC microgrids are connected, while controllingthe power flow of BESSs. This paper considers solar photovoltaic(PV) systems as the RES whereas a diesel generator equipped witha rectifier is used as a backup supply to maintain the continuity ofpower supply in the case of emergency situations. The controller isdesigned recursively based on the Lyapunov control theory whereall parameters within the model of BESSs are assumed to beunknown. These unknown parameters are then estimated throughthe adaptation laws and whose stability is ensured by formulatingsuitable control Lyapunov functions (CLFs) at different stages ofthe design process. Moreover, a scheme is also presented to monitorthe state of charge (SOC) of the BESS. Finally, the performanceof the proposed controller is verified on a test DC microgrid undervarious operating conditions. The proposed controller ensures the DCbus voltage regulation within the acceptable limits under differentoperating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a numerical study of the turbulent kinetic energy budget in the wake of cylinders undergoing Vortex-Induced Vibration (VIV). We show three-dimensional Large Eddy Simulations (LES) of an elastically mounted circular cylinder in the synchronization regime at Reynolds number of Re=8000. The Immersed Boundary Method (IBM) is used to account for the presence of the cylinder. The flow field in the wake is decomposed using the triple decomposition splitting the flow variables in mean, coherent and stochastic components. The energy transfer between these scales of motions are then studied and the results of the free oscillation are compared to those of a forced oscillation. The turbulent kinetic energy budget shows that the maximum amplitude of VIV is defined by the ability of the mean flow to feed energy to the coherent structures in the wake. At amplitudes above this maximum amplitude, the energy of the coherent structures needs to be fed additionally by small scale, stochastic energy in form of backscatter to sustain its motion. Furthermore, we demonstrate that the maximum amplitude of the VIV is defined by the integral length scale of the turbulence in the wake

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regarding canal management modernization, water savings and water delivery quality, the study presents two automatic canal control approaches of the PI (Proportional and Integral) type: the distant and the local downstream control modes. The two PI controllers are defined, tuned and tested using an hydraulic unsteady flow simulation model, particularly suitable for canal control studies. The PI control parameters are tuned using optimization tools. The simulations are done for a Portuguese prototype canal and the PI controllers are analyzed and compared considering a demand-oriented-canal operation. The paper presents and analyzes the two control modes answers for five different offtake types – gate controlled weir, gate controlled orifice, weir with or without adjustable height and automatic flow adjustable offtake. The simulation results are compared using water volumes performance indicators (considering the demanded, supplied and the effectives water volumes) and a time indicator, defined taking into account the time during which the demand discharges are effective discharges. Regarding water savings, the simulation results for the five offtake types prove that the local downstream control gives the best results (no water operational losses) and that the distant downstream control presents worse results in connection with the automatic flow adjustable offtakes. Considering the water volumes and time performance indicators, the best results are obtained for the automatic flow adjustable offtakes and the worse for the gate controlled orifices, followed by the weir with adjustable height.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluids are important because of their preponderance in our lives. Fluid mechanics touches almost every aspect of our daily lives, and it plays a central role in many branches of science and technology. Therefore, it is a challenging and exciting field of scientific activity due to the complexity of the subject studied and the breadth of the applications. The quest for advances in fluid mechanics, as in other scientific fields, emerge from analytical, computational (CFD) and experimental studies. The improvement in our ability to describe, predict and control the phenomena played (and plays) key roles in the technological breakthroughs. The present theme issue of “Fluid and Heat Flow: Simulation and Optimization” collects a selection of papers. selection of papers presented at Special Session “Fluid Flow, Energy Transfer and Design”