982 resultados para Viscosity.
Resumo:
An azo-group containing polybutadiene macroinitiator was prepared by Pinner synthesis and characterized by IR, NMR, GPC, viscosity and elemental measurements. The macroinitiator was further use to polymerize acrylamide (AAm) in benzene to form polybutadiene/polyacrylamide (PBD/PAAm) block copolymers. High conversion of AAm was obtained over a wide range of monomer/macroinitiator ratios. The PBD/PAAm block copolymers were found to have excellent solvent resistance.
Resumo:
Morphology and mechanical properties of polypropylene (PP)/high density polyethylene (HDPE) blends modified by ethylene-propylene copolymers (EPC) with residual PE crystallinity were investigated. The EPC showed different interfacial behavior in PP/HDPE blends of different compositions. A 25/75 blend of PP/HDPE (weight ratio) showed improved tensile strength and elongation at break at low EPC content (5 wt %). For the PP/HDPE = 50/50 blend, the presence of the EPC component tended to make the PP dispersed phase structure transform into a cocontinuous one, probably caused by improved viscosity matching of the two components. Both tensile strength and elongation at break were improved at EPC content of 5 wt %. For PP/HDPE 75/25 blends, the much smaller dispersed HDPE phase and significantly improved elongation at break resulted from compatibilization by EPC copolymers. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Phase behavior, thermal, theological and mechanical properties plus morphology have been studied for a binary polymer blend. The blend is phenolphthalein polyethersulfone (PES-C) with a thermotropic liquid crystalline polymer (LCP), a condensation copolymer of p-hydroxybenzoic acid with ethylene terephthalate (PHB-PET). It was found that these two polymers form optically isotropic and homogeneous blends by means of a solvent casting method. The homogeneous blends undergo phase separation during heat treatment. However, melt mixed PES-C/PHB-PET blends were heterogeneous based upon DSC and DMA analysis and SEM examination. Addition of LCP in PES-C resulted in a marked reduction of melt viscosity and thus improved processability. Compared to pure PES-C, the charpy impact strength of the blend containing 2.5% LCP increased 2.5 times. Synergistic effects were also observed for the mechanical properties of blends containing < 10% LCP. Particulates, ribbons, and fibrils were found to be the typical morphological units of PHB-PET in the PES-C matrix, which depended upon the concentration of LCP and the processing conditions.
Resumo:
New functional copolyether sulfones with pendant aldehyde groups were synthesized by the classical polycondensation reaction between 4,4' -dichlorodiphenyl sulfone (I) and various bisphenols such as 5,5'-methylene bis-salicylaldehyde (II-2), 2,2-bis( 4-hydroxyphenyl)propane (III), and 2,6-bis(4-hydroxybenzylidene)cyclohexanone (IV). Condensation reaction with 4-aminophenol led to pendant phenolic azomethine groups containing copolyether sulfones. The structures of the resulting polymers were confirmed by IR, H-1-NMR spectra, and elemental analyses. The polymers were characterized by reduced viscosity, solubility, thermal stability, DSC, and x-ray diffraction measurements.
Resumo:
The criteria of polymer-polymer miscibility determined by viscometry are reviewed, and a new criterion is proposed based on the classical Huggins equation and the Huggins coefficient K(m) in the blends. It was found that, in a ternary (polymer-A)-(polymer-B)-solvent system, [GRAPHICS] In the absence of strong specific interaction forces between molecules that would encourage aggregation and at sufficiently low concentration, the above equation can be written thus: [GRAPHICS] This equation can be used to determine the miscibility of polymer blends, when: alpha greater-than-or-equal-to 0 miscible, alpha < 0 immiscible. It is found that the new criterion is reasonable and suitable to predict polymer-polymer miscibility by the viscometry method.
Resumo:
The structure and properties of presumed block copolymers of polypropylene (PP) with ethylene-propylene random copolymers (EPR), i.e., PP-EPR and PP-EPR-PP, have been investigated by viscometry, transmission electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, gel permeation chromatography, wide-angle x-ray diffraction, and other techniques testing various mechanical properties. PP-EPR and PP-EPR-PP were synthesized using delta-TiCl3-Et2AlCl as a catalyst system. The results indicate that the intrinsic viscosity of these polymers increases with each block-building step, whereas the intrinsic viscosity of those prepared by chain transfer reaction (strong chain-transfer reagent hydrogen was introduced between block-building steps during polymerization) hardly changes with the reaction time. Compared with PP / EPR blends, PP-EPR-PP block copolymers have lower PP and polyethylene crystallinity, and lower melting and crystallization temperatures of crystalline EPR. Two relaxation peaks of PP and EPR appear in the dynamic spectra of blends. They merge into a very broad relaxation peak with block sequence products of the same composition, indicating good compatibility between PP and EPR in the presence of block copolymers. Varying the PP and EPR content affects the crystallinity, density, and morphological structure of the products, which in turn affects the tensile strength and elongation at break. Because of their superior mechanical properties, sequential polymerization products containing PP-EPR and PP-EPR-PP block copolymers may have potential as compatibilizing agents for isotactic polypropylene and polyethylene blends or as potential heat-resistant thermoplastic elastomers.
Resumo:
End-linked hydroxyl-terminated polybutadiene containing unattached linear polybutadiene was used to study the effect of reptating species on the fracture mechanics of rubber networks. The concentration of reptating species in the networks ranged from 0 to 100%. The fracture mechanics of the networks was described using the critical strain energy release rate in mode III testing, i.e. the tearing energy. The tearing energy was measured at room temperature using a 'trouser' specimen at a strain rate spanning five logarithmic decades. When the strain rate was as low as 10(-4) s-1, the tearing energy of the networks increased with reduction in reptating species. In this case the reptating species did not contribute to the tearing energy of the networks due to relaxation. Hence, the tearing energy increased with the number of crosslinked chains per unit volume in the networks. At a strain rate ranging from 10(-3) to 10(-1) s-1, the tearing energy of the networks was governed by local viscosity. The tearing energies of the networks containing various amounts of reptating species were superimposed to give a master curve based on the Williams-Landel-Ferry equation.
Resumo:
Blends with a liquid-crystal polymers (LCP) as one component show, in general, very interesting properties. Reduction of shear visocity and improvement of mechanical properties are very remarkable. High melting temperatures and high costs of the LCP limit the use of these blends. A new class of thermotropic LCPs with flexible spaces, with relatively low melting temperatures, can overcome the first problem. In this work, rheological and mechanical properties of blends of polypropylene with low contents of this LCP are presented. Torque during extrusion and viscosity decrease with LCP content. Elastic modulus is remarkably increased when the LCP phase is oriented.
Resumo:
A novel comb-like amphiphilic polymer, poly (2-acrylamidohexadecylsulfonic acid) (PAMC16S), was synthesized by free radical polymerization of the corresponding amphiphilic monomer in 1,4-dioxane-water mixed solvents. Depending on the ratio of water/dioxane in the solvent, the reaction proceeded by either precipitation polymerization or micellar polymerization. The molecular weight of the polymer obtained under similar conditions decreased and subsequently increased with the increase of water content in the mixed solvent. The polyion nature of PAMC16S was confirmed by viscosity data of ethanolic solutions. In addition, the polymer was characterized by solubility, IR, TG and wide angle X-ray diffraction methods.
Resumo:
The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42,134-149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313-351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313-351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971-5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
琼胶是一种从石花菜等红藻中提取的,目前生产工艺和结构等方面研究比较成熟的海藻多糖,广泛应用于医药、仪器等行业。但是,海藻多糖因为具有分子量大,粘度大,溶解度较小的等特点,而使其应用范围受到限制。利用降解的手段对其进行修饰,降低分子量和粘度,改善溶解性,可以拓展其应用范围。并且根据文献报道,琼 胶寡糖具有一些特殊的生物活性,如抗氧化性,抗炎症等。因此,对琼胶降解的研究具有生要意义。本研究中,为了选择一种合适的降解方法,进行了几种水解方法的尝试,其中包括在不同湿度和酸度下盐酸水解,过氧化氢和醋酸催化水解,Fenton体系羟基自由基降解。对于酸水解和Fenton体系氧化还原降解方法,通过粘度法对反应的速度进行了比较,表明氧化还原降解反应中琼胶的粘度降低比较快,并且具有代表性和新意,确定为本实验的降解琼胶的方法并对氧化还原降解所得的产物进行了活性实验。通过模仿自然界普遍存在的氧化还原降解反应,利用Vc诱导的Fenton体系产生的羟基自由基氧化还原降解琼胶得到低分子量的琼胶。降解产物经过高速离心、60%乙醇沉淀,除去分子量比较大的降解产物和磷酸盐,得到可溶于60%乙醇的分子量估计小于3000的降争产物,其产率为85%。利用经Sephadex-G25凝胶色谱分离所香的不同分子量的级分进行分子量和α-葡萄糖苷酶抑制活性关系的实验。降解产物对α-葡萄糖苷酶的抑制率和各级分的浓度呈线性正相关,并且各级分的IC_(50)则随着分子量的降低而降低。另外,对所得的降解产物混合物进行了红外吸收光谱、质子去偶核磁共震碳谱和负离子基质辅助激光诱导-飞行时间质谱结构分析。结果表明,氧化还原降解反应的专一性差,在得到寡糖的同时,在光谱图中出现一些比较复杂的副产物的结构信息。最后,根据MTT法的原理,以有体皮肤成纤维细胞为材料,通过紫外线辐射产生自由基造成氧化损伤,研究降解产物对成纤维细胞的保护作用。当无紫外线辐射时,降解产物对成纤维细胞具有显著的促进生长增殖作用:当经UVa、UBb辐射时则可以显著地表现出对损伤的保护作用,并且这种促进生长和保护作用呈显著的量效关系,表明降解产物具有清除基自由基的作用。但是,因为氧化还原降解以应的机理尚不十分明的以及琼羟胶的特殊结构,使得反应的副产物很难预测,也就使得分离工作难以进行,所以,根据目前所得的信息,尚不能确定是降解产物的什么级分产生的以上两种生物活性。
Resumo:
Productivity prediction is very important in the exploration and development of oilfields. Using well log data to predict productivity is a front-line technology, which is key issue in petroleum exploration phase. The essential factors of productivity prediction is building practical models and correcting various causes to improve precision of prediction parameters. Any errors of parameters selections can affect the calculation of productivity prediction; therefore, how to improve research means and calculation accuracy is an important task of productivity prediction. Theory and case examples are deeply and comprehensively studied in the paper. Based on the theory of mud-filtrate invasion and experimental results, the damage of drilling, cementing, perforating,acidizing and fracturing were investigated. The damage depth was quantitatively evaluated by log data, based on this, the processing results of reservoir sensitivity were used to analysis quantitatively the damage of reservoir. The productivity prediction and reservoir damage were initiatively incorporated according to well logging, and the precision of productivity prediction was effectively improved. The method of NMR was explored to calculate the fluid viscosity on the basis of reservoir physical method, and the differences between the two methods were compared in the paper. From the theory fluid flow in porous media, various of theoretical models of production prediction were explored and several practical models were consided, such as productivity index method, improved productivity index method, improved Bearder method, SVM and so on. The characteristic and the application scope of these methods were studied. The inflow productivity and outflow productivity were incorporated and nodal analysis method was used to forecast wellhead yield, thus achieved scientifically production. On the applied background of conventional logging suite, the applying of special items or new logging method which is practical in the research area were studied, the logging suite was further optimized, and the precision of forecast was improved. On the basis of the modeling and the calculation of parameters, these methods were verified and analyzed, and the reconstruct principle was also built for block reservoir. The research block was processed by these methods and compared with testing data. Based on above the research, a technological system which is practical for shaly sand profiles in Shengli Oilfield was built. The system can reach commercialized degree,and satisfied the need of exploration and development of the oilfield.
Resumo:
Geophysical inversion is a theory that transforms the observation data into corresponding geophysical models. The goal of seismic inversion is not only wave velocity models, but also the fine structures and dynamic process of interior of the earth, expanding to more parameters such as density, aeolotropism, viscosity and so on. As is known to all, Inversion theory is divided to linear and non-linear inversion theories. In rencent 40 years linear inversion theory has formed into a complete and systematic theory and found extensive applications in practice. While there are still many urgent problems to be solved in non-linear inversion theory and practice. Based on wave equation, this dissertation has been mainly involved in the theoretical research of several non-linear inversion methods: waveform inversion, traveltime inversion and the joint inversion about two methods. The objective of gradient waveform inversion is to find a geologic model, thus synthetic seismograms generated by this geologic model are best fitted to observed seismograms. Contrasting with other inverse methods, waveform inversion uses all characteristics of waveform and has high resolution capacity. But waveform inversion is an interface by interface method. An artificial parameter limit should be provided in each inversion iteration. In addition, waveform information will tend to get stuck in local minima if the starting model is too far from the actual model. Based on velocity scanning in traditional seismic data processing, a layer-by-layer waveform inversion method is developed in this dissertation to deal with weaknesses of waveform inversion. Wave equation is used to calculate the traveltime and derivative (perturbation of traveltime with respect to velocity) in wave-equation traveltime inversion (WT). Unlike traditional ray-based travetime inversion, WT has many advantages. No ray tracing or traveltime picking and no high frequency assumption is necessary and good result can be got while starting model is far from real model. But, comparing with waveform inversion, WT has low resolution. Waveform inversion and WT have complementary advantages and similar algorithm, which proves that the joint inversion is a better inversion method. And another key point which this dissertation emphasizes is how to give fullest play to their complementary advantages on the premise of no increase of storage spaces and amount of calculation. Numerical tests are implemented to prove the feasibility of inversion methods mentioned above in this dissertation. Especially for gradient waveform inversion, field data are inversed. This field data are acquired by our group in Wali park and Shunyi district. Real data processing shows there are many problems for waveform inversion to deal with real data. The matching of synthetic seismograms with observed seismograms and noise cancellation are two primary problems. In conclusion, on the foundation of the former experiences, this dissertation has implemented waveform inversions on the basis of acoustic wave equation and elastic wave equation, traveltime inversion on the basis of acoustic wave equation and traditional combined waveform traveltime inversion. Besides the traditional analysis of inversion theory, there are two innovations: layer by layer inversion of seimic reflection data inversion and rapid method for acoustic wave-equation joint inversion.
Resumo:
Natural fluids with water-salt-gas are often found in every sphere of the Earth, whose physicochemical properties and geochemical behaviors are complicated. To study these properties and behaviors turns out to be one of the challenging issues in geosciences. Traditional approaches mainly depend on experiments and observations. However, it is impossible to obtain a large number of data covering a large T-P space of the Earth by experimental methods in the near future, which will hinder the advance of the theoretical study. Therefore, it is important to model natural fluids by advanced theoretical methods, by which limited experimental data can be extended to a large temperature-pressure-composition space. Physicochemical models developed in this dissertation are not only more accurate, but also extend the applied T-P-m region of the experimental data of the multi-fluid systems by about two times. These models provide the new and accurate theoretical tools for the geochemical research, especially for the water-rock interactions and the study of the fluid inclusions. The main achievements can be summarized as follows: (1) A solubility model on components of natural gases is presented. The solubility model on the systems of CH4-H2O-NaCl, C2H6-H2O-NaCl or N2-H2O-NaCl takes advantage of modern physicochemical theory and methods, and is an improvement over previous models whose prediction and precision are relatively poor. The model can predict not only the gas solubility in liquid phase but also water content in the gas phase. In addition, it can predict gases (methane or nitrogen) solubility in seawater and brine. Isochores can be determined, which are very important in the interpretation of fluid inclusions. (2) A density model on common aqueous salt solutions is developed. The density models with high precision for common aqueous salt solutions (H2O-NaCl, H2O-LiCl, H2O-KCl, H2O-MgCl2, H2O-CaCl2, H2O-SrCl2 or H2O-BaCl2) are absent in the past. Previous density models are limited to the relatively small range of experimental data, and cannot meet the requirement of the study of natural fluids. So a general density model of the above systems is presented by us based on the international standard density model of the water. The model exceeds the other models in both precision and prediction. (3) A viscosity model on common aqueous alkali-chloride solutions is proposed. Dynamic viscosity of water-salt systems, an important physics variable, is widely used in three-dimension simulation of the fluids. But in most cases, due to the lack of viscosity models with a wide T-P range, the viscosity of aqueous salt solutions is replaced by that of the water, giving rise to a relatively large uncertainty. A viscosity model with good prediction for the systems (H2O-NaCl, H2O-LiCl or H2O-KCl) is presented on the base of the international standard viscosity model of water and the density model developed before. (4) Equation of State applied in fluid inclusions. The best Equations of State in the world developed by others or us recently are applied in the study of the fluid inclusions. Phase equilibria and isochores of unitary system (e.g. H2O, CO2, CH4, O2, N2, C2H6 or H2S), binary H2O-NaCl system and ternary H2O-CH4-NaCl system are finished. From these programs and thermodynamic equations of coexisting ores, the physicochemical conditions before or after the deposits form can be determined. To some extent, it is a better tool.
Resumo:
The real media always attenuate and distort seismic waves as they propagate in the earth. This behavior can be modeled with a viscoelastic and anisotropic wave equation. The real media can be described as fractured media. In this thesis, we present a high-order staggered grid finite-difference scheme for 2-D viscoelastic wave propagation in a medium containing a large number of small finite length fractures. We use the effective medium approach to compute the anisotropic parameters in each grid cell. By comparing our synthetic seismogram by staggered-grid finite-difference with that by complex-ray parameter ray tracing method, we conclude that the high-order staggered-grid finite-difference technique can effectively used to simulate seismic propagation in viscoelastic-anisotropic media. Synthetic seismograms demonstrate that strong attenuation and significant frequency dispersion due to viscosity are important factors of reducing amplitude and delaying arrival time varying with incidence angle or offset. On the other hand, the amount of scattered energy not only provides an indicator of orientation of fracture sets, but can also provide information about the fracture spacing. Analysis of synthetic seismograms from dry- and fluid-filled fractures indicates that dry-filled fractures show more significant scattering on seismic wavefields than fluid-filled ones, and offset-variations in P-wave amplitude are observable. We also analyze seismic response of an anticlinal trap model that includes a gas-filled fractured reservoir with high attenuation, which attenuates and distorts the so-called bright spot.