978 resultados para Vice-President’s report
Resumo:
Durability issues of reinforced concrete construction cost millions of dollars in repair or demolition. Identification of the causes of degradation and a prediction of service life based on experience, judgement and local knowledge has limitations in addressing all the associated issues. The objective of this CRC CI research project is to develop a tool that will assist in the interpretation of the symptoms of degradation of concrete structures, estimate residual capacity and recommend cost effective solutions. This report is a documentation of the research undertaken in connection with this project. The primary focus of this research is centred on the case studies provided by Queensland Department of Main Roads (QDMR) and Brisbane City Council (BCC). These organisations are endowed with the responsibility of managing a huge volume of bridge infrastructure in the state of Queensland, Australia. The main issue to be addressed in managing these structures is the deterioration of bridge stock leading to a reduction in service life. Other issues such as political backlash, public inconvenience, approach land acquisitions are crucial but are not within the scope of this project. It is to be noted that deterioration is accentuated by aggressive environments such as salt water, acidic or sodic soils. Carse, 2005, has noted that the road authorities need to invest their first dollars in understanding their local concretes and optimising the durability performance of structures and then look at potential remedial strategies.
Resumo:
This report summarises the findings from the Sustainable Subdivisions: Energy-Efficient Design project. As new energy-efficiency regulations are developed, there will be a significant demand for information on available assessment tools for rating energy-efficient dwellings, and subdivisional issues such as orientation and solar access will become increasingly important. There will also be increased pressure for products that deliver energy efficiency, such as solar technology, glazing systems, insulation and low-energy building products and materials. The objectives of the Sustainable Subdivisions: Energy-Efficient Design project were to:
Resumo:
Orthopaedics and Trauma Queensland is an internationally recognised research group that is developing into an international leader in research and education. It provides a stimulus for research, education and clinical application within the international orthopaedic and trauma communities. Orthopaedics and Trauma Queensland develops and promotes the innovative use of engineering and technology, in collaboration with surgeons, to provide new techniques, materials, procedures and medical devices. Its integration with clinical practice and strong links with hospitals ensure that the research will be translated into practical outcomes for patients. The group undertakes clinical practice in orthopaedics and trauma and applies core engineering, modelling and clinical skills to challenges in medicine. The research is built on a strong foundation of knowledge in biomedical engineering and incorporates expertise in cell biology, mathematical modelling, human anatomy and physiology and clinical medicine in orthopaedics and trauma. New knowledge is being developed and applied to the full range of orthopaedic diseases and injuries, such as knee and hip replacements, fractures and spinal deformities.
Resumo:
Report provided back by Bronwyn Fredericks on her participation at the First Native American and Indigenous Studies Association Meeting held 21-23 May 2009 in Minnesota, United States of America.
Resumo:
Since 1995 the buildingSMART International Alliance for Interoperability (buildingSMART)has developed a robust standard called the Industry Foundation Classes (IFC). IFC is an object oriented data model with related file format that has facilitated the efficient exchange of data in the development of building information models (BIM). The Cooperative Research Centre for Construction Innovation has contributed to the international effort in the development of the IFC standard and specifically the reinforced concrete part of the latest IFC 2x3 release. Industry Foundation Classes have been endorsed by the International Standards Organisation as a Publicly Available Specification (PAS) under the ISO label ISO/PAS 16739. For more details, go to http://www.tc184- sc4.org/About_TC184-SC4/About_SC4_Standards/ The current IFC model covers the building itself to a useful level of detail. The next stage of development for the IFC standard is where the building meets the ground (terrain) and with civil and external works like pavements, retaining walls, bridges, tunnels etc. With the current focus in Australia on infrastructure projects over the next 20 years a logical extension to this standard was in the area of site and civil works. This proposal recognises that there is an existing body of work on the specification of road representation data. In particular, LandXML is recognised as also is TransXML in the broader context of transportation and CityGML in the common interfacing of city maps, buildings and roads. Examination of interfaces between IFC and these specifications is therefore within the scope of this project. That such interfaces can be developed has already been demonstrated in principle within the IFC for Geographic Information Systems (GIS) project. National road standards that are already in use should be carefully analysed and contacts established in order to gain from this knowledge. The Object Catalogue for the Road Transport Sector (OKSTRA) should be noted as an example. It is also noted that buildingSMART Norway has submitted a proposal