988 resultados para Vermiculita. Cera de carnaúba. Hidrofobização. Adsorção. Óleo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the energy consumed worldwide comes from oil, coal and natural gas. These sources are limited and estimated to be exhausted in the future, therefore, the search for alternative sources of energy is paramount. Currently, there is considerable interest in making trade sustainable biodiesel, a fuel alternative to fossil fuels, due to its renewable nature and environmental benefits of its use in large scale. This trend has led the Brazilian government to establish a program (Probiodiesel) with the aim of introducing biodiesel into the national energy matrix, by addition of 5% biodiesel to conventional diesel in 2010 to foster not only the increase of renewable energy, but reduce imports of crude oil. This work evaluates different methods of extraction of oil Carthamus tinctorius L., their characterization by IR, 1H and 13C NMR, HPLC and TG and their use in the production of methyl ester (molar ratio of oil / alcohol 1:6, and NaOH catalyst). The physico-chemical parameters (acid value, density, viscosity, saponification index and surface tension) of oil and biodiesel were also described. The produced biodiesel had a yield of 93.65%, was characterized in relation to their physicochemical properties showing satisfactory results (density=875 kg/m3, viscosity = 6.22 mm2/s, AI = 0.01 mg (NaOH) /g) compared with the values established by the the National Agency Oil, Natural Gas and Biofuels

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion is a natural process that causes progressive deterioration of materials, so, reducing the corrosive effects is a major objective of development of scientific studies. In this work, the efficiency of corrosion inhibition on a AISI 1018 carbon steel of the nanoemulsion system containing the oil of the seeds of Azadirachta indica A. Juss (SNEOAI) was evaluated by the techniques of linear polarization resistance (LPR) and weight loss (CPM), a instrumented cell. For that, hydroalcoholic extract of leaves of A. indica (EAI) was solubilized in a nanoemulsion system (SNEOAI) of which O/W system (rich in aqueous phase). This nanoemulsion system (tested in different concentrations) was obtained with oil from the seeds of this plant species (OAI) (oil phase), dodecylammonium chloride (DDAC) (surfactant), butanol (cosurfactant) and water, using 30 % of C/T (cosurfactant/surfactant), 0.5 % of oil phase and 69.5 % of aqueous phase, and characterized by surface tension, rheology and droplet sizes. This systems SNEOAI and SNEOAI-EAI (nanoemulsion containing hydroalcoholic extract - EAI) showed inhibition efficiencies in corrosive environment in saline (1 %), for the method of LPR with significant value of 70.58 % (300 ppm) to SNEOAI, 74.17 % (100 ppm) and 72.51 % (150 ppm) to SNEOAI-EAI. The best efficiencies inhibitions were observed for the method of CPM with 85.41 % for the SNEOAI (300 ppm) and 83.19 % SNEOAI-EAI (500 ppm). The results show that this formulation could be used commercially for use as a corrosion inhibitor, this research contributed to the biotechnological applicability of Azadirachta indica, considering the large use of this plant species rich in limonoids (tetranortriterpenoids), especially azadirachtin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The underground natural gas found associated or not with oil is characterized by a mixture of hydrocarbons and residual components such as carbon dioxide (CO2), nitrogen gas (N2) and hydrogen sulfide (H2S), called contaminants. The H2S especially promotes itself as a contaminant of natural gas to be associated with corrosion of pipelines, to human toxicity and final applications of Natural Gas (NG). The sulfur present in the GN must be fully or partially removed in order to meet the market specifications, security, transport or further processing. There are distinct and varied methods of desulfurization of natural gas processing units used in Natural Gas (UPGN). In order to solve these problems have for example the caustic washing, absorption, the use of membranes and adsorption processes is costly and great expenditure of energy. Arises on such findings, the need for research to active processes of economic feasibility and efficiency. This work promoted the study of the adsorption of sulfide gas in polymer matrices hydrogen pure and modified. The substrates of Poly(vinyl chloride) (PVC), poly(methyl methacrylate) (PMMA) and sodium alginate (NaALG) were coated with vanadyl phosphate compounds (VOPO4.2H2O), vanadium pentoxide (V2O5), rhodamine B (C28H31N2O3Cl) and ions Co2+ and Cu2+, aiming to the adsorption of hydrogen sulfide gas (H2S). The adsorption tests were through a continuous flow of H2S in a column system (fixed bed reactor) adsorption on a laboratory scale. The techniques used to characterize the adsorbents were Infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), X-ray fluorescence (XRF), the X-ray diffraction (XRD) electron microscopy (SEM). Such work indicates, the results obtained, the adsorbents modified PMMA, PVC and NaALG have a significant adsorptive capacity. The matrix that stood out and had the best adsorption capacity, was to ALG modified Co2+ with a score of 12.79 mg H2S / g matrix

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work was to carry out a study on the adsorption of hydrogen sulfide (H2S) in arrays synthesized from a commercial clay mineral formed by a mixture of dolomite and quartz. To produce the ion exchange matrix were made using aqueous solutions of salts of cobalt II chloride hexahydrate (CoCl2.6H2O) II cadmium nitrate tetrahydrate (Cd (NO3)2.4H2O) I mercuric chloride (HgCl) nitrate and chromium III pentahydrate (Cr (NO3)3.5H2O). The arrays were subjected to hydrogen sulphide gas passage for one hour. To check the amount of gas adsorbed was used gravimetric process. The best result was in the adsorption matrix doped with cadmium and the solution retained for a longer time than the largest amount of H2S was the cobalt matrix. The matrix unmodified exhibited poor adsorption capacity. The characterization of the matrices were used XRD, XRF and IV. Mother with cadmium showed a high capacity in ion exchange, because the percentage of cadmium increased from 0% to 81.38% by replacing atoms of calcium and silicon which increased from 96.54% to 17.56% and 15, 72% to 0.32%, respectively, but also the best performance in adsorption of H2S adsorbing 11.89507 mg per gram of matrix

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic processes are widely present in everyday life. This results in large number of studies seeking materials that may combine the low cost catalytic efficiency. Based on this assumption, the clays have long been used as catalysts, with its huge availability, diversity and possibility of improving their properties from structural changes, primarily responsible for this great use. Among the natural clays, vermiculite due to their characteristic properties (high cation exchange capacity and expansion), is suitable for various applications including as catalysts and catalyst supports. In this work, the acid leaching of clay vermiculite was performed, coming from Santa Luzia-PB, with nitric acid (2, 3 and 4 mol / L) and subsequent calcination of the materials obtained. The materials were named as Vx/400, where x is the acid concentration employed and 400 used in calcination temperature. The effectiveness of changes made was determined by XRD techniques, FT-IR, EDS, TG/DTG, nitrogen physisorption and DTP of n-butylamine. Acid leaching has improved some properties of the clay - specific area and acidity - but the control of the acid concentration used is of vital importance, since the highest concentration caused the partial destruction of vermiculite entailing a decline in their properties. For analysis of the catalytic activity of the modified clay was made a comparative study with the SBA -15 mesoporous materials, synthesized via hydrothermal method, using the pyrolysis of low density polyethylene (LDPE). The results showed that the acid plays a fundamental role in the conversion of the polymer into smaller molecules, the material V3/400 was more selective for the source monomer (ethylene) due to their increased acidity, which promotes more breaks bonds in the polymeric chain, while materials and V0/400 V2/400, lower acidity, showed higher selectivity to light hydrocarbons, the range of fuel (41.96 and 41.23%, respectively), due to less breakage and secondary condensation reactions chains; already V4/400 SBA-15/550 and resulted in lower percentages of light hydrocarbons and the partial destruction of the structure and low acidity, respectively, responsible for the inefficiency of materials

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkyl polyethoxylates are surfactants widely used in vastly different fields, from oil exploitation to pharmaceutical applications. One of the most interesting characteristics of these surfactants is their ability to form micellar systems with specific geometry, the so-called wormlike micelle. In this work, microemulsions with three distinct compositions (C/T = 40 %, 30 % and 25 %) was used with contain UNITOL / butanol / water / xylene, cosurfactant / surfactante (C/S) ratio equal to 0,5. The microemulsion was characterized by dynamic light scattering (DLS), capillary viscometry, torque rheometry and surface tensiometry experiments carried out with systems based on xylene, water, butanol (cosurfactant) and nonaethyleneglycolmonododecyl ether (surfactant), with fixed surfactant:cosurfactant:oil composition (with and without oil phase) and varying the overall concentration of the microemulsion. The results showed that a transition from wormlike micelles to nanodrops was characterized by maximum relative viscosity (depending on how relative viscosity was defined), which was connected to maximum effective diameter, determined by DLS. Surface tension suggested that adsorption at the air water interface had a Langmuir character and that the limiting value of the surfactant surface excess was independent of the presence of cosurfactant and xylene. The results of the solubilization of oil sludge and oil recovery with the microemulsion: C/S = 40%, 30% and 25% proved to be quite effective in solubilization of oil sludge, with the percentage of solubilization (%solubilization) as high as 92.37% and enhanced oil recovery rates up to 90.22% for the point with the highest concentration of active material (surfactant), that is, 40%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contamination by metal ions has been occurring for decades through the introduction of liquid effluent not treated, mainly from industrial activities, rivers and lakes, affecting water quality. For that the effluent can be disposed in water bodies, environmental standards require that they be adequately addressed, so that the concentration of metals does not exceed the limits of standard conditions of release in the receptor. Several methods for wastewater treatment have been reported in the literature, but many of them are high cost and low efficiency. The adsorption process has been used as effective for removal of metal ions. This paper presents studies to evaluate the potential of perlite as an adsorbent for removing metals in model solution. Perlite, in its natural form (NP) and expanded (EP), was characterized by X-ray fluorescence, X-ray diffraction, surface area analysis using nitrogen adsorption (BET method), scanning electron microscopy and Fourier transform infrared spectroscopy. The physical characteristic and chemical composition of the material presented were appropriate for the study of adsorption. Adsorption experiments by the method of finite bath for model solutions of metal ions Cr3+, Cu2+, Mn2+ and Ni2+ were carried out in order to study the effect of pH, mass of the adsorbent and the contact time on removal of ions in solution. The results showed that perlite has good adsorption capacity. The NP has higher adsorption capacity (mg g-1) than the EP. According to the values of the constant of Langmuir qm (mg g-1), the maximum capacity of the monolayer was obtained and in terms of proportion of mass, we found the following order experimental adsorption: Cr3+ (2.194 mg g- 1) > Ni2+ (0.585 mg g-1) > Mn2+ (0.515 mg g-1) > Cu2+ (0.513 mg g-1) and Cr3+ (1.934 mg g-1)> Ni2+ (0.514 mg g-1) > Cu2+ (0.421 mg g-1) > Mn2+ (0.364 mg g-1) on the NP and EP, respectively. The experimental data were best fitted the Langmuir model compared to Freundlich for Cu2+, Mn2+ and Ni2+. However, for the Cr3+, both models fit the experimental data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To overcome the challenge of meeting growing energy demand in a sustainable way, biodiesel has shown very promising as alternative energy can replace fossil fuels, even partially. Industrially, the biodiesel is produced by homogeneous transesterification reaction of vegetable oils in the presence of basic species used as catalysts. However, this process is the need for purification of the esters obtained and the removal of glycerin formed after the reaction. This context, the alternative catalysts have that can improve the process of biodiesel production, aiming to reduce costs and facilitate its production. In this study, the AlSBA-15 support with Si / Al ratio = 50 was synthesized, as like as the heterogeneous catalysts of zinc oxide and magnesium supported on mesoporous AlSBA-15 silica, in the concentrations of 5, 10, 15 and 30 %, relative to the support. The textural properties and structural characterization of catalysts and supports were determined by techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) coupled to the chemical analyzer, adsorption / desorption of N2, thermal analysis (TG / DTG), absorption spectroscopy in the infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Characterization results indicated that the support AlSBA-15 retained the hexagonal ordered after the incorporation of zinc oxide and magnesium oxide in the holder. For heterogeneous catalysts, ZnO-AlSBA-15, that was observed the presence of zinc oxide nanoparticles dispersed in the surface and interior channels of the mesoporous and microporous support. The catalytic activity was evaluated by the transesterification reaction of sunflower oil via methylic route, and some reaction parameters were optimized with the most active catalyst in biodiesel production by sunflower oil. For the series of heterogeneous catalysts, the sample with 30 % ZnO supported on AlSBA-15 showed a better conversion of triglyceride to methyl esters, about 95.41 % of reaction conditions: temperature 175 °C, with molar ratio of 42:1, stirring at 200 rpm and under a pressure of 14 bar for 6 h. The catalyst MgO-AlSBA-15 showed no catalytic activity in the studied reactions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work were synthesized the materials called vanadyl phosphate, hydrogen vanadyl phosphate and vanadyl phosphate doped by transition metals with the aim in adsorption the following compounds: ammonia, hydrogen sulfide and nitrogen oxide. To characterize the starting compounds was used DRX, FTIR, FRX and TG analysis. After the characterization of substrates, proceeded de adsorption of NH3 and H2S gases in reactor, passing the gases with continuous flow for 30 min and room temperature. Gravimetric data indicate that the matrices of higher performance in adsorption of ammonia was those doped by aluminum and manganese, obtaining results of 216,77 mgNH3/g and 200,40 mgNH3/g of matrix, respectively. The matrice of higher performance in adsorption of hydrogen sulfide was that doped by manganese, obtaining results of 86,94 mgH2S/g of matrix. The synthesis of substrates VOPO4.2H2O and MnVOPO4.2H2O with nitrogen oxide was made in solution, aiming the final products VOPO4.G.nH2O and MnVOPO4.G.nH2O (G = NO and n = number of water molecules). The thermo analytical behavior and the infrared spectroscopy are indicative of formation of VOPO4.2,5NO.3H2O compound. Results of scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDS) of materials vanadyl phosphate and vanadyl phosphate modified after reaction in solid state or in solution with the gases show morphology changes in substrates, beyond the formation of orthorhombic sulfur crystals over their respective hosts when these adsorb hydrogen sulfide

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mesoporous nanostructured materials have been studied for application in the oil industry, in particular Al-MCM-41, due to the surface area around 800 to 1.000 m2 g-1 and, pore diameters ranging from 2 to 10 nm, suitable for catalysis to large molecules such as heavy oil. The MCM-41 has been synthesized by hydrothermal method, on which aluminum was added, in the ratio Si/Al equal to 50, to increase the generation of active acid sites in the nanotubes. The catalyst was characterized by X-ray diffraction (XRD), surface area by the BET method and, the average pore volume BJH method using the N2 adsorption, absorption spectroscopy in the infrared Fourier Transform (FT-IR) and determination of surface acidity with application of a probe molecule - n-butylamine. The catalyst showed well-defined structural properties and consistent with the literature. The overall objective was to test the Al-MCM-41 as catalyst and thermogravimetric perform tests, using two samples of heavy oil with API º equal to 14.0 and 18.5. Assays were performed using a temperature range of 30-900 ° C and heating ratios (β) ranging from 5, 10 and 20 °C min-1.The aim was to verify the thermogravimetric profiles of these oils when subjected to the action of the catalyst Al- MCM-41. Therefore, the percentage ranged catalyst applied 1, 3, 5, 10 and 20 wt%, and from the TG data were applied two different kinetic models: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahrira-Sunose (KAS).The apparent activation energies found for both models had similar values and were lower for the second event of mass loss known as cracking zone, indicating a more effective performance of Al-MCM-41 in that area. Furthermore, there was a more pronounced reduction in the value of activation energy for between 10 and 20% by weight of the oil-catalyst mixture. It was concluded that the Al-MCM-41 catalyst has applicability in heavy oils to reduce the apparent activation energy of a catalyst-oil system, and the best result with 20% by weight of Al-MCM-41

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive use of machinery and engines burning fuel dumps into the atmosphere huge amounts of carbon dioxide (CO2), causing the intensification of the greenhouse effect. Climate changes that are occurring in the world are directly related to emissions of greenhouse gases, mainly CO2, gases, mainly due to the excessive use of fossil fuels. The search for new technologies to minimize the environmental impacts of this phenomenon has been investigated. Sequestration of CO2 is one of the alternatives that can help minimize greenhouse gas emissions. The CO2 can be captured by the post-combustion technology, by adsorption using adsorbents selective for this purpose. With this objective, were synthesized by hydrothermal method at 100 °C, the type mesoporous materials MCM - 41 and SBA-15. After the synthesis, the materials were submitted to a calcination step and subsequently functionalized with different amines (APTES, MEA, DEA and PEI) through reflux method. The samples functionalized with amines were tested for adsorption of CO2 in order to evaluate their adsorption capacities as well, were subjected to various analyzes of characterization in order to assess the efficiency of the method used for functionalization with amines. The physic-chemical techniques were used: X- ray diffraction (XRD), nitrogen adsorption and desorption (BET/BJH), scanning electron microscopy (SEM), transmission electron microscopy (TEM), CNH Analysis, Thermogravimetry (TG/DTG) and photoelectron spectroscopy X-ray (XPS). The CO2 adsorption experiments were carried out under the following conditions: 100 mg of adsorbent, at 25 °C under a flow of 100 ml/min of CO2, atmospheric pressure and the adsorption variation in time 10-210 min. The X-ray diffraction with the transmission electron micrographs for the samples synthesized and functionalized, MCM-41 and SBA-15 showed characteristic peaks of hexagonal mesoporous structure formation, showing the structure thereof was obtained. The method used was efficient reflux according to XPS and elemental analysis, which showed the presence of amines in the starting materials. The functionalized SBA -15 samples were those that had potential as best adsorbent for CO2 capture when compared with samples of MCM-41, obtaining the maximum adsorption capacity for SBA-15-P sample

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of oil and gas is usually accompanied by the production of water, also known as produced water. Studies were conducted in platforms that discharge produced water in the Atlantic Ocean due to oil and gas production by Petrobras from 1996 to 2006 in the following basins: Santos (Brazilian south region), Campos (Brazilian southeast region) and Ceara (Brazilian northeast region). This study encompasses chemical composition, toxicological effects, discharge volumes, and produced water behavior after releasing in the ocean, including dispersion plumes modeling and monitoring data of the marine environment. The concentration medians for a sampling of 50 samples were: ammonia (70 mg L-1), boron (1.3 mg L1), iron (7.4 mg L-1), BTEX (4.6 mg L-1), PAH (0.53 mg L-1), TPH (28 mg L-1); phenols (1.3 mg L-1) and radioisotopes (0.15 Bq L-1 for 226Ra and 0.09 Bq L-1 for 228Ra). The concentrations of the organic and inorganic parameters observed for the Brazilian platforms were similar to the international reference data for the produced water in the North Sea and in other regions of the world. It was found significant differences in concentrations of the following parameters: BTEX (p<0.0001), phenols (p=0.0212), boron (p<0.0001), iron (p<0.0001) and toxicological response in sea urchin Lytechinus variegatus (p<0.0001) when considering two distinguished groups, platforms from southeast and northeast Region (PCR-1). Significant differences were not observed among the other parameters. In platforms with large gas production, the monoaromatic concentrations (BTEX from 15.8 to 21.6 mg L-1) and phenols (from 2 to 83 mg L-1) were higher than in oil plataforms (median concentrations of BTEX were 4.6 mg L-1 for n=53, and of phenols were 1.3 mg L-1 for n=46). It was also conducted a study about the influence of dispersion plumes of produced water in the vicinity of six platforms of oil and gas production (P-26, PPG-1, PCR-1, P-32, SS-06), and in a hypothetical critical scenario using the chemical characteristics of each effluent. Through this study, using CORMIX and CHEMMAP models for dispersion plumes simulation of the produced water discharges, it was possible to obtain the dilution dimension in the ocean after those discharges. The dispersion plumes of the produced water modelling in field vicinity showed dilutions of 700 to 900 times for the first 30-40 meters from the platform PCR-1 discharge point; 100 times for the platform P-32, with 30 meters of distance; 150 times for the platform P-26, with 40 meters of distance; 100 times for the platform PPG-1, with 130 meters of distance; 280 to 350 times for the platform SS-06, with 130 meters of distance, 100 times for the hypothetical critical scenario, with the 130 meters of distance. The dilutions continue in the far field, and with the results of the simulations, it was possible to verify that all the parameters presented concentrations bellow the maximum values established by Brazilian legislation for seawater (CONAMA 357/05 - Class 1), before the 500 meters distance of the discharge point. These results were in agreement with the field measurements. Although, in general results for the Brazilian produced water presented toxicological effects for marine organisms, it was verified that dilutions of 100 times were sufficient for not causing toxicological responses. Field monitoring data of the seawater around the Pargo, Pampo and PCR-1 platforms did not demonstrate toxicity in the seawater close to these platforms. The results of environmental monitoring in seawater and sediments proved that alterations were not detected for environmental quality in areas under direct influence of the oil production activities in the Campos and Ceara Basin, as according to results obtained in the dispersion plume modelling for the produced water discharge

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersions composed of polyelectrolyte complexes based on chitosan and poly(methacrylic acid), PMAA, were obtained by the dropping method and template polymerization. The effect of molecular weight of PMAA and ionic strength on the formation of chitosan/poly(methacrylic acid), CS/PMAA, complexes was evaluated using the dropping method. The increase in molecular weight of PMAA inhibited the formation of insoluble complexes, while the increase in ionic strength first favored the formation of the complex followed by inhibiting it at higher concentrations. The polyelectrolyte complexation was strongly dependent on macromolecular dimensions, both in terms of molecular weight and of coil expansion/contraction driven by polyelectrolyte effect. The resultant particles from dropping method and template polymerization were characterized as having regions with different charge densities: chitosan predominating in the core and poly(methacrylic acid) at the surface, the particles being negatively charged, as a consequence. Albumin was adsorbed on templatepolymerized CS/PMAA complexes (after crosslinking with glutardialdehyde) and pH was controlled in order to obtain two conditions: (i) adsorption of positively charged albumin, and (ii) adsorption of albumin at its isoelectric point. Adsorption isotherms and zeta potential measurements showed that albumin adsorption was controlled by hydrogen bonding/van der Waals interactions and that brushlike structures may enhance adsorption of albumin on these particles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of oil and gas is usually accompanied by the production of water, also known as produced water. Studies were conducted in platforms that discharge produced water in the Atlantic Ocean due to oil and gas production by Petrobras from 1996 to 2006 in the following basins: Santos (Brazilian south region), Campos (Brazilian southeast region) and Ceara (Brazilian northeast region). This study encompasses chemical composition, toxicological effects, discharge volumes, and produced water behavior after releasing in the ocean, including dispersion plumes modeling and monitoring data of the marine environment. The concentration medians for a sampling of 50 samples were: ammonia (70 mg L-1), boron (1.3 mg L1), iron (7.4 mg L-1), BTEX (4.6 mg L-1), PAH (0.53 mg L-1), TPH (28 mg L-1); phenols (1.3 mg L-1) and radioisotopes (0.15 Bq L-1 for 226Ra and 0.09 Bq L-1 for 228Ra). The concentrations of the organic and inorganic parameters observed for the Brazilian platforms were similar to the international reference data for the produced water in the North Sea and in other regions of the world. It was found significant differences in concentrations of the following parameters: BTEX (p<0.0001), phenols (p=0.0212), boron (p<0.0001), iron (p<0.0001) and toxicological response in sea urchin Lytechinus variegatus (p<0.0001) when considering two distinguished groups, platforms from southeast and northeast Region (PCR-1). Significant differences were not observed among the other parameters. In platforms with large gas production, the monoaromatic concentrations (BTEX from 15.8 to 21.6 mg L-1) and phenols (from 2 to 83 mg L-1) were higher than in oil plataforms (median concentrations of BTEX were 4.6 mg L-1 for n=53, and of phenols were 1.3 mg L-1 for n=46). It was also conducted a study about the influence of dispersion plumes of produced water in the vicinity of six platforms of oil and gas production (P-26, PPG-1, PCR-1, P-32, SS-06), and in a hypothetical critical scenario using the chemical characteristics of each effluent. Through this study, using CORMIX and CHEMMAP models for dispersion plumes simulation of the produced water discharges, it was possible to obtain the dilution dimension in the ocean after those discharges. The dispersion plumes of the produced water modelling in field vicinity showed dilutions of 700 to 900 times for the first 30-40 meters from the platform PCR-1 discharge point; 100 times for the platform P-32, with 30 meters of distance; 150 times for the platform P-26, with 40 meters of distance; 100 times for the platform PPG-1, with 130 meters of distance; 280 to 350 times for the platform SS-06, with 130 meters of distance, 100 times for the hypothetical critical scenario, with the 130 meters of distance. The dilutions continue in the far field, and with the results of the simulations, it was possible to verify that all the parameters presented concentrations bellow the maximum values established by Brazilian legislation for seawater (CONAMA 357/05 - Class 1), before the 500 meters distance of the discharge point. These results were in agreement with the field measurements. Although, in general results for the Brazilian produced water presented toxicological effects for marine organisms, it was verified that dilutions of 100 times were sufficient for not causing toxicological responses. Field monitoring data of the seawater around the Pargo, Pampo and PCR-1 platforms did not demonstrate toxicity in the seawater close to these platforms. The results of environmental monitoring in seawater and sediments proved that alterations were not detected for environmental quality in areas under direct influence of the oil production activities in the Campos and Ceara Basin, as according to results obtained in the dispersion plume modelling for the produced water discharge

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar morfometricamente a neoangiogênese de retalhos cutâneos subdérmicos em ratos tratados com óleo de copaíba (Copaifera langsdorffii) em pomada a 10%. O delineamento experimental foi inteiramente casualizado, composto por três recursos farmacológicos. Foram utilizadas dez repetições para cada recurso, e cada animal foi considerado uma unidade experimental. Trinta ratos Wistar foram submetidos à elevação do retalho cutâneo dorsal subdérmico e distribuídos em três grupos: grupo controle absoluto, no qual os animais não receberam nenhum tratamento; grupo controle, no qual os animais receberam tratamento tópico diário com pomada com apenas veículo (glicerina e vaselina); e grupo tratado, no qual os animais foram tratados diariamente com óleo de copaíba em pomada a 10%. Os ratos foram tratados e observados por oito dias após o ato operatório. No oitavo dia de pós-operatório, realizou-se a análise macroscópica do retalho e foram coletados fragmentos das porções cranial, média e caudal do retalho cutâneo para análise histopatológica. A análise morfométrica mostrou diferença significativa para o número de novos vasos sanguíneos nas partes média e caudal do retalho cutâneo no grupo tratado. O óleo de copaíba mostra-se eficiente no aumento da neoangiogênese em retalhos cutâneos subdérmicos de ratos.