927 resultados para Vehicles, Military.
Resumo:
Waste produced during the service life of automobiles has received much less attention than end-of-life vehicles themselves. In this paper, we deal with the set up of a reverse logistics system for the collection and treatment of use-phase residues. First, the type of waste arising during vehicles? service life is characterized. Data were collected in collaboration with SIGRAUTO, the product stewardship organization in charge of vehicles? recovery in Spain. Next, three organizational models are proposed. The three alternatives are benchmarked and assessed from a double organizational and operational perspective for the particular case of the Madrid region in Spain
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi-Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles' state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle's state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle's state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
It is known that the techniques under the topic of Soft Computing have a strong capability of learning and cognition, as well as a good tolerance to uncertainty and imprecision. Due to these properties they can be applied successfully to Intelligent Vehicle Systems; ITS is a broad range of technologies and techniques that hold answers to many transportation problems. The unmannedcontrol of the steering wheel of a vehicle is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle; to reach it, information about the car state while a human driver is handling the car is taken and used to adjust, via iterative geneticalgorithms an appropriated fuzzy controller. To evaluate the obtained controllers, it will be considered the performance obtained in the track following task, as well as the smoothness of the driving carried out.
Resumo:
This article presents a cartographic system to facilitate cooperative manoeuvres among autonomous vehicles in a well-known environment. The main objective is to design an extended cartographic system to help in the navigation of autonomous vehicles. This system has to allow the vehicles not only to access the reference points needed for navigation, but also noticeable information such as the location and type of traffic signals, the proximity to a crossing, the streets en route, etc. To do this, a hierarchical representation of the information has been chosen, where the information has been stored in two levels. The lower level contains the archives with the Universal Traverse Mercator (UTM) coordinates of the points that define the reference segments to follow. The upper level contains a directed graph with the relational database in which streets, crossings, roundabouts and other points of interest are represented. Using this new system it is possible to know when the vehicle approaches a crossing, what other paths arrive at that crossing, and, should there be other vehicles circulating on those paths and arriving at the crossing, which one has the highest priority. The data obtained from the cartographic system is used by the autonomous vehicles for cooperative manoeuvres.
Resumo:
Decreasing the accidents on highway and urban environments is the main motivation for the research and developing of driving assistance systems, also called ADAS (Advanced Driver Assistance Systems). In recent years, there are many applications of these systems in commercial vehicles: ABS systems, Cruise Control (CC), parking assistance and warning systems (including GPS), among others. However, the implementation of driving assistance systems on the steering wheel is more limited, because of their complexity and sensitivity. This paper is focused in the development, test and implementation of a driver assistance system for controlling the steering wheel in curve zones. This system is divided in two levels: an inner control loop which permits to execute the position and speed target, softening the action over the steering wheel, and a second control outer loop (controlling for fuzzy logic) that sends the reference to the inner loop according the environment and vehicle conditions. The tests have been done in different curves and speeds. The system has been proved in a commercial vehicle with satisfactory results.
Resumo:
El objetivo principal de esta Tesis es extender la utilización del “Soft- Computing” para el control de vehículos sin piloto utilizando visión. Este trabajo va más allá de los típicos sistemas de control utilizados en entornos altamente controlados, demonstrando la fuerza y versatilidad de la lógica difusa (Fuzzy Logic) para controlar vehículos aéreos y terrestres en un abanico de applicaciones diferentes. Para esta Tesis se ha realizado un gran número de pruebas reales en las cuales los controladores difusos han manejado una plataforma visual “pan-and-tilt”, un helicoptero, un coche comercial y hasta dos tipos de quadrirotores. El uso del método de optimización “Cross-Entropy” ha sido utilizado para mejorar el comportamiento de algunos de los controladores borrosos. Todos los controladores difusos presentados en ésta Tesis han sido implementados utilizando un código desarrollado por el candidato para tal efecto, llamado MOFS (Miguel Olivares’ Fuzzy Software). Diferentes algoritmos visuales han sido utilizados para adquirir la informaci´on visual del entorno, “Cmashift”, descomposición de la homografía y detección de marcas de realidad aumentada, entre otros. Dicha información visual ha sido utilizada como entrada de los controladores difusos para comandar los vehículos en las diferentes applicaciones autonomas. El volante de un vehículo comercial ha sido controlado para realizar pruebas de conducción autónoma en condiciones de tráfico similares a las de una ciudad. El sistema ha llegado a completar con éxito pruebas de más de 6 km sin ninguna interacción humana, mediante el seguimiento de una línea pintada en el suelo. El limitado campo visual del sistema no ha sido impedimento para alcanzar velocidades de hasta 48 km/h y ser guiado autonomamente en curvas de radio reducido. Objetos estáticos y móviles han sido seguidos desde un helicoptero no tripulado, mediante el control de una plataforma visual “pan-and-tilt”. ´Éste mismo helicoptero ha sido controlado completamente para su aterrizaje autonomo, mediante el control del movimiento lateral (roll), horizontal (pitch) y de altitud. El seguimiento de objetos volantes ha sido resulto mediante el control horizontal (pitch) y de orientación (heading) de un quadrirotor. Para tareas de evitación de obstáculos se ha implementado un controlador difuso para el manejo de la orientación (heading) de un quadrirotor. En el campo de la optimización de controladores se ha aportado al estado del arte una extensión del uso del método “Cross-Entropy”. Está Tesis presenta una novedosa implementación de dicho método para la optimización de las ganancias, la posición y medida de los conjuntos de las funciones de pertenecia y el peso de las reglas para mejorar el comportamiento de un controlador difuso. Dichos procesos de optimización se han realizado utilizando “ROS” y “Matlab Simulink” para obtener mejores resultados para la evitación de colisiones con vehículos aéreos no tripulados. Ésta Tesis demuestra que los controladores implementados con lógica difusa son altamente capaces de controlador sistemas sin tener en cuenta el modelo del vehículo a controlador en entornos altamente perturbables con un sensor de bajo coste como es una cámara. El ruido presentes causado por los cambios de iluminación en la adquisición de imágenes y la alta incertidumbre en la detección visual han sido manejados satisfactoriamente por ésta técnica de de “Soft-Computing” para distintas aplicaciones tanto con vehículos aéreos como terrestres.
Resumo:
In this paper, calculus of variations and combined blade element and momentum theory (BEMT) are used to demonstrate that, in hover, when neither root nor tip losses are considered; the rotor, which minimizes the total power (MPR), generates an induced velocity that varies linearly along the blade span. The angle of attack of every blade element is constant and equal to its optimum value. The traditional ideal twist (ITR) and optimum (OR) rotors are revisited in the context of this variational framework. Two more optimum rotors are obtained considering root and tip losses, the ORL, and the MPRL. A comparison between these five rotors is presented and discussed. The MPR and MPRL present a remarkable saving of power for low values of both thrust coefficient and maximum aerodynamic efficiency. The result obtained can be exploited to improve the aerodynamic behaviour of rotary wing micro air vehicles (MAV). A comparison with experimental results obtained from the literature is presented.
Resumo:
The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require 3D coupled vehicle-bridge models, and consideration of wheel to rail contact, a phenomenon which is complex and costly to model in detail. We describe here a fully nonlinear coupled model, described in absolute coordinates and incorporated into a commercial finite element framework. Two applications are presented, firstly to a vehicle subject to a strong wind gust traversing a br idge, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle. The second application is to a real viaduct in a high-speed line, with a long continuous deck and tall piers with high lateral compliance. The results show the safety of the traffic as well as the relevance of considering the wind action and the nonlinear response.
Resumo:
Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone’s video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW
Finite Element Analysis Model of a Contactless Transformer for Battery Chargers in Electric Vehicles
Resumo:
A contactless transformer model is proposed in this paper using Finite Element Analysis (FEA). This model can be used to simulate Inductive Coupling Power Transfer (ICPT) systems with good accuracy of the transformer and reduce the fabrication time of these systems. The model not only takes into account the geometry of the windings but also the frequency effects in them. As the transformer does not have a magnetic core, it is complicated to model because the flux is expanded in the area around the windings. In order to obtain a very accurate model, it is necessary to use a 2D/3D field solver.
Resumo:
El principal objetivo de esta tesis es dotar a los vehículos aéreos no tripulados (UAVs, por sus siglas en inglés) de una fuente de información adicional basada en visión. Esta fuente de información proviene de cámaras ubicadas a bordo de los vehículos o en el suelo. Con ella se busca que los UAVs realicen tareas de aterrizaje o inspección guiados por visión, especialmente en aquellas situaciones en las que no haya disponibilidad de estimar la posición del vehículo con base en GPS, cuando las estimaciones de GPS no tengan la suficiente precisión requerida por las tareas a realizar, o cuando restricciones de carga de pago impidan añadir sensores a bordo de los vehículos. Esta tesis trata con tres de las principales áreas de la visión por computador: seguimiento visual y estimación visual de la pose (posición y orientación), que a su vez constituyen la base de la tercera, denominada control servo visual, que en nuestra aplicación se enfoca en el empleo de información visual para controlar los UAVs. Al respecto, esta tesis se ocupa de presentar propuestas novedosas que permitan solucionar problemas relativos al seguimiento de objetos mediante cámaras ubicadas a bordo de los UAVs, se ocupa de la estimación de la pose de los UAVs basada en información visual obtenida por cámaras ubicadas en el suelo o a bordo, y también se ocupa de la aplicación de las técnicas propuestas para solucionar diferentes problemas, como aquellos concernientes al seguimiento visual para tareas de reabastecimiento autónomo en vuelo o al aterrizaje basado en visión, entre otros. Las diversas técnicas de visión por computador presentadas en esta tesis se proponen con el fin de solucionar dificultades que suelen presentarse cuando se realizan tareas basadas en visión con UAVs, como las relativas a la obtención, en tiempo real, de estimaciones robustas, o como problemas generados por vibraciones. Los algoritmos propuestos en esta tesis han sido probados con información de imágenes reales obtenidas realizando pruebas on-line y off-line. Diversos mecanismos de evaluación han sido empleados con el propósito de analizar el desempeño de los algoritmos propuestos, entre los que se incluyen datos simulados, imágenes de vuelos reales, estimaciones precisas de posición empleando el sistema VICON y comparaciones con algoritmos del estado del arte. Los resultados obtenidos indican que los algoritmos de visión por computador propuestos tienen un desempeño que es comparable e incluso mejor al de algoritmos que se encuentran en el estado del arte. Los algoritmos propuestos permiten la obtención de estimaciones robustas en tiempo real, lo cual permite su uso en tareas de control visual. El desempeño de estos algoritmos es apropiado para las exigencias de las distintas aplicaciones examinadas: reabastecimiento autónomo en vuelo, aterrizaje y estimación del estado del UAV. Abstract The main objective of this thesis is to provide Unmanned Aerial Vehicles (UAVs) with an additional vision-based source of information extracted by cameras located either on-board or on the ground, in order to allow UAVs to develop visually guided tasks, such as landing or inspection, especially in situations where GPS information is not available, where GPS-based position estimation is not accurate enough for the task to develop, or where payload restrictions do not allow the incorporation of additional sensors on-board. This thesis covers three of the main computer vision areas: visual tracking and visual pose estimation, which are the bases the third one called visual servoing, which, in this work, focuses on using visual information to control UAVs. In this sense, the thesis focuses on presenting novel solutions for solving the tracking problem of objects when using cameras on-board UAVs, on estimating the pose of the UAVs based on the visual information collected by cameras located either on the ground or on-board, and also focuses on applying these proposed techniques for solving different problems, such as visual tracking for aerial refuelling or vision-based landing, among others. The different computer vision techniques presented in this thesis are proposed to solve some of the frequently problems found when addressing vision-based tasks in UAVs, such as obtaining robust vision-based estimations at real-time frame rates, and problems caused by vibrations, or 3D motion. All the proposed algorithms have been tested with real-image data in on-line and off-line tests. Different evaluation mechanisms have been used to analyze the performance of the proposed algorithms, such as simulated data, images from real-flight tests, publicly available datasets, manually generated ground truth data, accurate position estimations using a VICON system and a robotic cell, and comparison with state of the art algorithms. Results show that the proposed computer vision algorithms obtain performances that are comparable to, or even better than, state of the art algorithms, obtaining robust estimations at real-time frame rates. This proves that the proposed techniques are fast enough for vision-based control tasks. Therefore, the performance of the proposed vision algorithms has shown to be of a standard appropriate to the different explored applications: aerial refuelling and landing, and state estimation. It is noteworthy that they have low computational overheads for vision systems.
Resumo:
El diseño y desarrollo de sistemas de suspensión para vehículos se basa cada día más en el diseño por ordenador y en herramientas de análisis por ordenador, las cuales permiten anticipar problemas y resolverlos por adelantado. El comportamiento y las características dinámicas se calculan con precisión, bajo coste, y recursos y tiempos de cálculo reducidos. Sin embargo, existe una componente iterativa en el proceso, que requiere la definición manual de diseños a través de técnicas “prueba y error”. Esta Tesis da un paso hacia el desarrollo de un entorno de simulación eficiente capaz de simular, analizar y evaluar diseños de suspensiones vehiculares, y de mejorarlos hacia la solución optima mediante la modificación de los parámetros de diseño. La modelización mediante sistemas multicuerpo se utiliza aquí para desarrollar un modelo de autocar con 18 grados de libertad, de manera detallada y eficiente. La geometría y demás características de la suspensión se ajustan a las del vehículo real, así como los demás parámetros del modelo. Para simular la dinámica vehicular, se utiliza una formulación multicuerpo moderna y eficiente basada en las ecuaciones de Maggi, a la que se ha incorporado un visor 3D. Así, se consigue simular maniobras vehiculares en tiempos inferiores al tiempo real. Una vez que la dinámica está disponible, los análisis de sensibilidad son cruciales para una optimización robusta y eficiente. Para ello, se presenta una técnica matemática que permite derivar las variables dinámicas dentro de la formulación, de forma algorítmica, general, con la precisión de la maquina, y razonablemente eficiente: la diferenciación automática. Este método propaga las derivadas con respecto a las variables de diseño a través del código informático y con poca intervención del usuario. En contraste con otros enfoques en la bibliografía, generalmente particulares y limitados, se realiza una comparación de librerías, se desarrolla una formulación híbrida directa-automática para el cálculo de sensibilidades, y se presentan varios ejemplos reales. Finalmente, se lleva a cabo la optimización de la respuesta dinámica del vehículo citado. Se analizan cuatro tipos distintos de optimización: identificación de parámetros, optimización de la maniobrabilidad, optimización del confort y optimización multi-objetivo, todos ellos aplicados al diseño del autocar. Además de resultados analíticos y gráficos, se incluyen algunas consideraciones acerca de la eficiencia. En resumen, se mejora el comportamiento dinámico de vehículos por medio de modelos multicuerpo y de técnicas de diferenciación automática y optimización avanzadas, posibilitando un ajuste automático, preciso y eficiente de los parámetros de diseño. ABSTRACT Each day, the design and development of vehicle suspension systems relies more on computer-aided design and computer-aided engineering tools, which allow anticipating the problems and solving them ahead of time. Dynamic behavior and characteristics are thus simulated accurately and inexpensively with moderate computational times and resources. There is, however, an iterative component in the process, which involves the manual definition of designs in a trialand-error manner. This Thesis takes a step towards the development of an efficient simulation framework capable of simulating, analyzing and evaluating vehicle suspension designs, and automatically improving them by varying the design parameters towards the optimal solution. The multibody systems approach is hereby used to model a three-dimensional 18-degrees-of-freedom coach in a comprehensive yet efficient way. The suspension geometry and characteristics resemble the ones from the real vehicle, as do the rest of vehicle parameters. In order to simulate vehicle dynamics, an efficient, state-of-the-art multibody formulation based on Maggi’s equations is employed, and a three-dimensional graphics viewer is developed. As a result, vehicle maneuvers can be simulated faster than real-time. Once the dynamics are ready, a sensitivity analysis is crucial for a robust optimization. To that end, a mathematical technique is introduced, which allows differentiating the dynamic variables within the multibody formulation in a general, algorithmic, accurate to machine precision, and reasonably efficient way: automatic differentiation. This method propagates the derivatives with respect to the design parameters throughout the computer code, with little user interaction. In contrast with other attempts in the literature, mostly not generalpurpose, a benchmarking of libraries is carried out, a hybrid direct-automatic differentiation approach for the computation of sensitivities is developed, and several real-life examples are analyzed. Finally, a design optimization process of the aforementioned vehicle is carried out. Four different types of dynamic response optimization are presented: parameter identification, handling optimization, ride comfort optimization and multi-objective optimization; all of which are applied to the design of the coach example. Together with analytical and visual proof of the results, efficiency considerations are made. In summary, the dynamic behavior of vehicles is improved by using the multibody systems approach, along with advanced differentiation and optimization techniques, enabling an automatic, accurate and efficient tuning of design parameters.
Resumo:
La Aeroelasticidad fue definida por Arthur Collar en 1947 como "el estudio de la interacción mutua entre fuerzas inerciales, elásticas y aerodinámicas actuando sobre elementos estructurales expuestos a una corriente de aire". Actualmente, esta definición se ha extendido hasta abarcar la influencia del control („Aeroservoelasticidad‟) e, incluso, de la temperatura („Aerotermoelasticidad‟). En el ámbito de la Ingeniería Aeronáutica, los fenómenos aeroelásticos, tanto estáticos (divergencia, inversión de mando) como dinámicos (flameo, bataneo) son bien conocidos desde los inicios de la Aviación. Las lecciones aprendidas a lo largo de la Historia Aeronáutica han permitido establecer criterios de diseño destinados a mitigar la probabilidad de sufrir fenómenos aeroelásticos adversos durante la vida operativa de una aeronave. Adicionalmente, el gran avance experimentado durante esta última década en el campo de la Aerodinámica Computacional y en la modelización aeroelástica ha permitido mejorar la fiabilidad en el cálculo de las condiciones de flameo de una aeronave en su fase de diseño. Sin embargo, aún hoy, los ensayos en vuelo siguen siendo necesarios para validar modelos aeroelásticos, verificar que la aeronave está libre de inestabilidades aeroelásticas y certificar sus distintas envolventes. En particular, durante el proceso de expansión de la envolvente de una aeronave en altitud/velocidad, se requiere predecir en tiempo real las condiciones de flameo y, en consecuencia, evitarlas. A tal efecto, en el ámbito de los ensayos en vuelo, se han desarrollado diversas metodologías que predicen, en tiempo real, las condiciones de flameo en función de condiciones de vuelo ya verificadas como libres de inestabilidades aeroelásticas. De entre todas ellas, aquella que relaciona el amortiguamiento y la velocidad con un parámetro específico definido como „Margen de Flameo‟ (Flutter Margin), permanece como la técnica más común para proceder con la expansión de Envolventes en altitud/velocidad. No obstante, a pesar de su popularidad y facilidad de aplicación, dicha técnica no es adecuada cuando en la aeronave a ensayar se hallan presentes no-linealidades mecánicas como, por ejemplo, holguras. En particular, en vuelos de ensayo dedicados específicamente a expandir la envolvente en altitud/velocidad, las condiciones de „Oscilaciones de Ciclo Límite‟ (Limit Cycle Oscillations, LCOs) no pueden ser diferenciadas de manera precisa de las condiciones de flameo, llevando a una determinación excesivamente conservativa de la misma. La presente Tesis desarrolla una metodología novedosa, basada en el concepto de „Margen de Flameo‟, que permite predecir en tiempo real las condiciones de „Ciclo Límite‟, siempre que existan, distinguiéndolas de las de flameo. En una primera parte, se realiza una revisión bibliográfica de la literatura acerca de los diversos métodos de ensayo existentes para efectuar la expansión de la envolvente de una aeronave en altitud/velocidad, el efecto de las no-linealidades mecánicas en el comportamiento aeroelástico de dicha aeronave, así como una revisión de las Normas de Certificación civiles y militares respecto a este tema. En una segunda parte, se propone una metodología de expansión de envolvente en tiempo real, basada en el concepto de „Margen de Flameo‟, que tiene en cuenta la presencia de no-linealidades del tipo holgura en el sistema aeroelástico objeto de estudio. Adicionalmente, la metodología propuesta se valida contra un modelo aeroelástico bidimensional paramétrico e interactivo programado en Matlab. Para ello, se plantean las ecuaciones aeroelásticas no-estacionarias de un perfil bidimensional en la formulación espacio-estado y se incorpora la metodología anterior a través de un módulo de análisis de señal y otro módulo de predicción. En una tercera parte, se comparan las conclusiones obtenidas con las expuestas en la literatura actual y se aplica la metodología propuesta a resultados experimentales de ensayos en vuelo reales. En resumen, los principales resultados de esta Tesis son: 1. Resumen del estado del arte en los métodos de ensayo aplicados a la expansión de envolvente en altitud/velocidad y la influencia de no-linealidades mecánicas en la determinación de la misma. 2. Revisión de la normas de Certificación Civiles y las normas Militares en relación a la verificación aeroelástica de aeronaves y los límites permitidos en presencia de no-linealidades. 3. Desarrollo de una metodología de expansión de envolvente basada en el Margen de Flameo. 4. Validación de la metodología anterior contra un modelo aeroelástico bidimensional paramétrico e interactivo programado en Matlab/Simulink. 5. Análisis de los resultados obtenidos y comparación con resultados experimentales. ABSTRACT Aeroelasticity was defined by Arthur Collar in 1947 as “the study of the mutual interaction among inertia, elastic and aerodynamic forces when acting on structural elements surrounded by airflow”. Today, this definition has been updated to take into account the Controls („Aeroservoelasticity‟) and even the temperature („Aerothermoelasticity‟). Within the Aeronautical Engineering, aeroelastic phenomena, either static (divergence, aileron reversal) or dynamic (flutter, buzz), are well known since the early beginning of the Aviation. Lessons learned along the History of the Aeronautics have provided several design criteria in order to mitigate the probability of encountering adverse aeroelastic phenomena along the operational life of an aircraft. Additionally, last decade improvements experienced by the Computational Aerodynamics and aeroelastic modelization have refined the flutter onset speed calculations during the design phase of an aircraft. However, still today, flight test remains as a key tool to validate aeroelastic models, to verify flutter-free conditions and to certify the different envelopes of an aircraft. Specifically, during the envelope expansion in altitude/speed, real time prediction of flutter conditions is required in order to avoid them in flight. In that sense, within the flight test community, several methodologies have been developed to predict in real time flutter conditions based on free-flutter flight conditions. Among them, the damping versus velocity technique combined with a Flutter Margin implementation remains as the most common technique used to proceed with the envelope expansion in altitude/airspeed. However, although its popularity and „easy to implement‟ characteristics, several shortcomings can adversely affect to the identification of unstable conditions when mechanical non-linearties, as freeplay, are present. Specially, during test flights devoted to envelope expansion in altitude/airspeed, Limits Cycle Oscillations (LCOs) conditions can not be accurately distinguished from those of flutter and, in consequence, it leads to an excessively conservative envelope determination. The present Thesis develops a new methodology, based on the Flutter Margin concept, that enables in real time the prediction of the „Limit Cycle‟ conditions, whenever they exist, without degrading the capability of predicting the flutter onset speed. The first part of this Thesis presents a review of the state of the art regarding the test methods available to proceed with the envelope expansion of an aircraft in altitude/airspeed and the effect of mechanical non-linearities on the aeroelastic behavior. Also, both civil and military regulations are reviewed with respect aeroelastic investigation of air vehicles. The second part of this Thesis proposes a new methodology to perform envelope expansion in real time based on the Flutter Margin concept when non-linearities, as freeplay, are present. Additionally, this methodology is validated against a Matlab/Slimulink bidimensional aeroelastic model. This model, parametric and interactive, is formulated within the state-space field and it implements the proposed methodology through two main real time modules: A signal processing module and a prediction module. The third part of this Thesis compares the final conclusions derived from the proposed methodology with those stated by the flight test community and experimental results. In summary, the main results provided by this Thesis are: 1. State of the Art review of the test methods applied to envelope expansion in altitude/airspeed and the influence of mechanical non-linearities in its identification. 2. Review of the main civil and military regulations regarding the aeroelastic verification of air vehicles and the limits set when non-linearities are present. 3. Development of a methodology for envelope expansion based on the Flutter Margin concept. 4. A Matlab/Simulink 2D-[aeroelastic model], parametric and interactive, used as a tool to validate the proposed methodology. 5. Conclusions driven from the present Thesis and comparison with experimental results.
Resumo:
In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrimental influence. Different trials that consider a neuro-fuzzy approach as a fundamental part of an intelligent semi-active control strategy have been carried out. Satisfactory results have been achieved compared to those obtained by means of vibration reduction passive techniques.
Resumo:
This paper describes the impact of electric mobility on the transmission grid in Flanders region (Belgium), using a micro-simulation activity based models. These models are used to provide temporal and spatial estimation of energy and power demanded by electric vehicles (EVs) in different mobility zones. The increment in the load demand due to electric mobility is added to the background load demand in these mobility areas and the effects over the transmission substations are analyzed. From this information, the total storage capacity per zone is evaluated and some strategies for EV aggregator are proposed, allowing the aggregator to fulfill bids on the electricity markets.