931 resultados para Urban Simulation Model
Computer model simulation of alveolar phase III slopes: Implications for tidal single-breath washout
Resumo:
This study investigates a theoretical model where a longitudinal process, that is a stationary Markov-Chain, and a Weibull survival process share a bivariate random effect. Furthermore, a Quality-of-Life adjusted survival is calculated as the weighted sum of survival time. Theoretical values of population mean adjusted survival of the described model are computed numerically. The parameters of the bivariate random effect do significantly affect theoretical values of population mean. Maximum-Likelihood and Bayesian methods are applied on simulated data to estimate the model parameters. Based on the parameter estimates, predicated population mean adjusted survival can then be calculated numerically and compared with the theoretical values. Bayesian method and Maximum-Likelihood method provide parameter estimations and population mean prediction with comparable accuracy; however Bayesian method suffers from poor convergence due to autocorrelation and inter-variable correlation. ^
Resumo:
Objective. To measure the demand for primary care and its associated factors by building and estimating a demand model of primary care in urban settings.^ Data source. Secondary data from 2005 California Health Interview Survey (CHIS 2005), a population-based random-digit dial telephone survey, conducted by the UCLA Center for Health Policy Research in collaboration with the California Department of Health Services, and the Public Health Institute between July 2005 and April 2006.^ Study design. A literature review was done to specify the demand model by identifying relevant predictors and indicators. CHIS 2005 data was utilized for demand estimation.^ Analytical methods. The probit regression was used to estimate the use/non-use equation and the negative binomial regression was applied to the utilization equation with the non-negative integer dependent variable.^ Results. The model included two equations in which the use/non-use equation explained the probability of making a doctor visit in the past twelve months, and the utilization equation estimated the demand for primary conditional on at least one visit. Among independent variables, wage rate and income did not affect the primary care demand whereas age had a negative effect on demand. People with college and graduate educational level were associated with 1.03 (p < 0.05) and 1.58 (p < 0.01) more visits, respectively, compared to those with no formal education. Insurance was significantly and positively related to the demand for primary care (p < 0.01). Need for care variables exhibited positive effects on demand (p < 0.01). Existence of chronic disease was associated with 0.63 more visits, disability status was associated with 1.05 more visits, and people with poor health status had 4.24 more visits than those with excellent health status. ^ Conclusions. The average probability of visiting doctors in the past twelve months was 85% and the average number of visits was 3.45. The study emphasized the importance of need variables in explaining healthcare utilization, as well as the impact of insurance, employment and education on demand. The two-equation model of decision-making, and the probit and negative binomial regression methods, was a useful approach to demand estimation for primary care in urban settings.^
Resumo:
Objectives. This paper seeks to assess the effect on statistical power of regression model misspecification in a variety of situations. ^ Methods and results. The effect of misspecification in regression can be approximated by evaluating the correlation between the correct specification and the misspecification of the outcome variable (Harris 2010).In this paper, three misspecified models (linear, categorical and fractional polynomial) were considered. In the first section, the mathematical method of calculating the correlation between correct and misspecified models with simple mathematical forms was derived and demonstrated. In the second section, data from the National Health and Nutrition Examination Survey (NHANES 2007-2008) were used to examine such correlations. Our study shows that comparing to linear or categorical models, the fractional polynomial models, with the higher correlations, provided a better approximation of the true relationship, which was illustrated by LOESS regression. In the third section, we present the results of simulation studies that demonstrate overall misspecification in regression can produce marked decreases in power with small sample sizes. However, the categorical model had greatest power, ranging from 0.877 to 0.936 depending on sample size and outcome variable used. The power of fractional polynomial model was close to that of linear model, which ranged from 0.69 to 0.83, and appeared to be affected by the increased degrees of freedom of this model.^ Conclusion. Correlations between alternative model specifications can be used to provide a good approximation of the effect on statistical power of misspecification when the sample size is large. When model specifications have known simple mathematical forms, such correlations can be calculated mathematically. Actual public health data from NHANES 2007-2008 were used as examples to demonstrate the situations with unknown or complex correct model specification. Simulation of power for misspecified models confirmed the results based on correlation methods but also illustrated the effect of model degrees of freedom on power.^
Resumo:
In regression analysis, covariate measurement error occurs in many applications. The error-prone covariates are often referred to as latent variables. In this proposed study, we extended the study of Chan et al. (2008) on recovering latent slope in a simple regression model to that in a multiple regression model. We presented an approach that applied the Monte Carlo method in the Bayesian framework to the parametric regression model with the measurement error in an explanatory variable. The proposed estimator applied the conditional expectation of latent slope given the observed outcome and surrogate variables in the multiple regression models. A simulation study was presented showing that the method produces estimator that is efficient in the multiple regression model, especially when the measurement error variance of surrogate variable is large.^
Resumo:
The Benguela Current, located off the west coast of southern Africa, is tied to a highly productive upwelling system**1. Over the past 12 million years, the current has cooled, and upwelling has intensified**2, 3, 4. These changes have been variously linked to atmospheric and oceanic changes associated with the glaciation of Antarctica and global cooling**5, the closure of the Central American Seaway**1, 6 or the further restriction of the Indonesian Seaway**3. The upwelling intensification also occurred during a period of substantial uplift of the African continent**7, 8. Here we use a coupled ocean-atmosphere general circulation model to test the effect of African uplift on Benguela upwelling. In our simulations, uplift in the East African Rift system and in southern and southwestern Africa induces an intensification of coastal low-level winds, which leads to increased oceanic upwelling of cool subsurface waters. We compare the effect of African uplift with the simulated impact of the Central American Seaway closure9, Indonesian Throughflow restriction10 and Antarctic glaciation**11, and find that African uplift has at least an equally strong influence as each of the three other factors. We therefore conclude that African uplift was an important factor in driving the cooling and strengthening of the Benguela Current and coastal upwelling during the late Miocene and Pliocene epochs.
Resumo:
State-of-the-art process-based models have shown to be applicable to the simulation and prediction of coastal morphodynamics. On annual to decadal temporal scales, these models may show limitations in reproducing complex natural morphological evolution patterns, such as the movement of bars and tidal channels, e.g. the observed decadal migration of the Medem Channel in the Elbe Estuary, German Bight. Here a morphodynamic model is shown to simulate the hydrodynamics and sediment budgets of the domain to some extent, but fails to adequately reproduce the pronounced channel migration, due to the insufficient implementation of bank erosion processes. In order to allow for long-term simulations of the domain, a nudging method has been introduced to update the model-predicted bathymetries with observations. The model-predicted bathymetry is nudged towards true states in annual time steps. Sensitivity analysis of a user-defined correlation length scale, for the definition of the background error covariance matrix during the nudging procedure, suggests that the optimal error correlation length is similar to the grid cell size, here 80-90 m. Additionally, spatially heterogeneous correlation lengths produce more realistic channel depths than do spatially homogeneous correlation lengths. Consecutive application of the nudging method compensates for the (stand-alone) model prediction errors and corrects the channel migration pattern, with a Brier skill score of 0.78. The proposed nudging method in this study serves as an analytical approach to update model predictions towards a predefined 'true' state for the spatiotemporal interpolation of incomplete morphological data in long-term simulations.
Resumo:
To prepare an answer to the question of how a developing country can attract FDI, this paper explored the factors and policies that may help bring FDI into a developing country by utilizing an extended version of the knowledge-capital model. With a special focus on the effects of FTAs/EPAs between market countries and developing countries, simulations with the model revealed the following: (1) Although FTA/EPA generally ends to increase FDI to a developing country, the possibility of improving welfare through increased demand for skilled and unskilled labor becomes higher as the size of the country declines; (2) Because the additional implementation of cost-saving policies to reduce firm-type/trade-link specific fixed costs ends to depreciate the price of skilled labor by saving its input, a developing country, which is extremely scarce in skilled labor, is better off avoiding the additional option; (3) If a country hopes to enjoy larger welfare gains with EPA, efforts to increase skilled labor in the country, such as investing in education, may be beneficial.
Resumo:
This paper explores the potential usefulness of an AGE model with the Melitz-type trade specification to assess economic effects of technical regulations, taking the case of the EU ELV/RoHS directives as an example. Simulation experiments reveal that: (1) raising the fixed exporting cost to make sales in the EU market brings results that exports of the targeted commodities (motor vehicles and parts for ELV and electronic equipment for RoHS) to the EU from outside regions/countries expand while the domestic trade in the EU shrinks when the importer's preference for variety (PfV) is not strong; (2) if the PfV is not strong, policy changes that may bring reduction in the number of firms enable survived producers with high productivity to expand production to be large-scale mass producers fully enjoying the fruit of economies of scale; and (3) When the strength of the importer's PfV is changed from zero to unity, there is the value that totally changes simulation results and their interpretations.