989 resultados para Uncertainty Modelling
Resumo:
Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.
Resumo:
Linguistic modelling is a rather new branch of mathematics that is still undergoing rapid development. It is closely related to fuzzy set theory and fuzzy logic, but knowledge and experience from other fields of mathematics, as well as other fields of science including linguistics and behavioral sciences, is also necessary to build appropriate mathematical models. This topic has received considerable attention as it provides tools for mathematical representation of the most common means of human communication - natural language. Adding a natural language level to mathematical models can provide an interface between the mathematical representation of the modelled system and the user of the model - one that is sufficiently easy to use and understand, but yet conveys all the information necessary to avoid misinterpretations. It is, however, not a trivial task and the link between the linguistic and computational level of such models has to be established and maintained properly during the whole modelling process. In this thesis, we focus on the relationship between the linguistic and the mathematical level of decision support models. We discuss several important issues concerning the mathematical representation of meaning of linguistic expressions, their transformation into the language of mathematics and the retranslation of mathematical outputs back into natural language. In the first part of the thesis, our view of the linguistic modelling for decision support is presented and the main guidelines for building linguistic models for real-life decision support that are the basis of our modeling methodology are outlined. From the theoretical point of view, the issues of representation of meaning of linguistic terms, computations with these representations and the retranslation process back into the linguistic level (linguistic approximation) are studied in this part of the thesis. We focus on the reasonability of operations with the meanings of linguistic terms, the correspondence of the linguistic and mathematical level of the models and on proper presentation of appropriate outputs. We also discuss several issues concerning the ethical aspects of decision support - particularly the loss of meaning due to the transformation of mathematical outputs into natural language and the issue or responsibility for the final decisions. In the second part several case studies of real-life problems are presented. These provide background and necessary context and motivation for the mathematical results and models presented in this part. A linguistic decision support model for disaster management is presented here – formulated as a fuzzy linear programming problem and a heuristic solution to it is proposed. Uncertainty of outputs, expert knowledge concerning disaster response practice and the necessity of obtaining outputs that are easy to interpret (and available in very short time) are reflected in the design of the model. Saaty’s analytic hierarchy process (AHP) is considered in two case studies - first in the context of the evaluation of works of art, where a weak consistency condition is introduced and an adaptation of AHP for large matrices of preference intensities is presented. The second AHP case-study deals with the fuzzified version of AHP and its use for evaluation purposes – particularly the integration of peer-review into the evaluation of R&D outputs is considered. In the context of HR management, we present a fuzzy rule based evaluation model (academic faculty evaluation is considered) constructed to provide outputs that do not require linguistic approximation and are easily transformed into graphical information. This is achieved by designing a specific form of fuzzy inference. Finally the last case study is from the area of humanities - psychological diagnostics is considered and a linguistic fuzzy model for the interpretation of outputs of multidimensional questionnaires is suggested. The issue of the quality of data in mathematical classification models is also studied here. A modification of the receiver operating characteristics (ROC) method is presented to reflect variable quality of data instances in the validation set during classifier performance assessment. Twelve publications on which the author participated are appended as a third part of this thesis. These summarize the mathematical results and provide a closer insight into the issues of the practicalapplications that are considered in the second part of the thesis.
Resumo:
This thesis concentrates on the validation of a generic thermal hydraulic computer code TRACE under the challenges of the VVER-440 reactor type. The code capability to model the VVER-440 geometry and thermal hydraulic phenomena specific to this reactor design has been examined and demonstrated acceptable. The main challenge in VVER-440 thermal hydraulics appeared in the modelling of the horizontal steam generator. The major challenge here is not in the code physics or numerics but in the formulation of a representative nodalization structure. Another VVER-440 specialty, the hot leg loop seals, challenges the system codes functionally in general, but proved readily representable. Computer code models have to be validated against experiments to achieve confidence in code models. When new computer code is to be used for nuclear power plant safety analysis, it must first be validated against a large variety of different experiments. The validation process has to cover both the code itself and the code input. Uncertainties of different nature are identified in the different phases of the validation procedure and can even be quantified. This thesis presents a novel approach to the input model validation and uncertainty evaluation in the different stages of the computer code validation procedure. This thesis also demonstrates that in the safety analysis, there are inevitably significant uncertainties that are not statistically quantifiable; they need to be and can be addressed by other, less simplistic means, ultimately relying on the competence of the analysts and the capability of the community to support the experimental verification of analytical assumptions. This method completes essentially the commonly used uncertainty assessment methods, which are usually conducted using only statistical methods.
Resumo:
Effective control and limiting of carbon dioxide (CO₂) emissions in energy production are major challenges of science today. Current research activities include the development of new low-cost carbon capture technologies, and among the proposed concepts, chemical combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) have attracted significant attention allowing intrinsic separation of pure CO₂ from a hydrocarbon fuel combustion process with a comparatively small energy penalty. Both CLC and CLOU utilize the well-established fluidized bed technology, but several technical challenges need to be overcome in order to commercialize the processes. Therefore, development of proper modelling and simulation tools is essential for the design, optimization, and scale-up of chemical looping-based combustion systems. The main objective of this work was to analyze the technological feasibility of CLC and CLOU processes at different scales using a computational modelling approach. A onedimensional fluidized bed model frame was constructed and applied for simulations of CLC and CLOU systems consisting of interconnected fluidized bed reactors. The model is based on the conservation of mass and energy, and semi-empirical correlations are used to describe the hydrodynamics, chemical reactions, and transfer of heat in the reactors. Another objective was to evaluate the viability of chemical looping-based energy production, and a flow sheet model representing a CLC-integrated steam power plant was developed. The 1D model frame was succesfully validated based on the operation of a 150 kWth laboratory-sized CLC unit fed by methane. By following certain scale-up criteria, a conceptual design for a CLC reactor system at a pre-commercial scale of 100 MWth was created, after which the validated model was used to predict the performance of the system. As a result, further understanding of the parameters affecting the operation of a large-scale CLC process was acquired, which will be useful for the practical design work in the future. The integration of the reactor system and steam turbine cycle for power production was studied resulting in a suggested plant layout including a CLC boiler system, a simple heat recovery setup, and an integrated steam cycle with a three pressure level steam turbine. Possible operational regions of a CLOU reactor system fed by bituminous coal were determined via mass, energy, and exergy balance analysis. Finally, the 1D fluidized bed model was modified suitable for CLOU, and the performance of a hypothetical 500 MWth CLOU fuel reactor was evaluated by extensive case simulations.
Resumo:
Meandering rivers have been perceived to evolve rather similarly around the world independently of the location or size of the river. Despite the many consistent processes and characteristics they have also been noted to show complex and unique sets of fluviomorphological processes in which local factors play important role. These complex interactions of flow and morphology affect notably the development of the river. Comprehensive and fundamental field, flume and theoretically based studies of fluviomorphological processes in meandering rivers have been carried out especially during the latter part of the 20th century. However, as these studies have been carried out with traditional field measurements techniques their spatial and temporal resolution is not competitive to the level achievable today. The hypothesis of this study is that, by exploiting e increased spatial and temporal resolution of the data, achieved by combining conventional field measurements with a range of modern technologies, will provide new insights to the spatial patterns of the flow-sediment interaction in meandering streams, which have perceived to show notable variation in space and time. This thesis shows how the modern technologies can be combined to derive very high spatial and temporal resolution data on fluvio-morphological processes over meander bends. The flow structure over the bends is recorded in situ using acoustic Doppler current profiler (ADCP) and the spatial and temporal resolution of the flow data is enhanced using 2D and 3D CFD over various meander bends. The CFD are also exploited to simulate sediment transport. Multi-temporal terrestrial laser scanning (TLS), mobile laser scanning (MLS) and echo sounding data are used to measure the flow-based changes and formations over meander bends and to build the computational models. The spatial patterns of erosion and deposition over meander bends are analysed relative to the measured and modelled flow field and sediment transport. The results are compared with the classic theories of the processes in meander bends. Mainly, the results of this study follow well the existing theories and results of previous studies. However, some new insights regarding to the spatial and temporal patterns of the flow-sediment interaction in a natural sand-bed meander bend are provided. The results of this study show the advantages of the rapid and detailed measurements techniques and the achieved spatial and temporal resolution provided by CFD, unachievable with field measurements. The thesis also discusses the limitations which remain in the measurement and modelling methods and in understanding of fluvial geomorphology of meander bends. Further, the hydro- and morphodynamic models’ sensitivity to user-defined parameters is tested, and the modelling results are assessed against detailed field measurement. The study is implemented in the meandering sub-Arctic Pulmanki River in Finland. The river is unregulated and sand-bed and major morphological changes occur annually on the meander point bars, which are inundated only during the snow-melt-induced spring floods. The outcome of this study applies to sandbed meandering rivers in regions where normally one significant flood event occurs annually, such as Arctic areas with snow-melt induced spring floods, and where the point bars of the meander bends are inundated only during the flood events.
Resumo:
Bioenergi ses som en viktig del av det nu- och framtida sortimentet av inhemsk energi. Svartlut, bark och skogsavfall täcker mer än en femtedel av den inhemska energianvändningen. Produktionsanläggningar kan fungera ofullständigt och en mängd gas-, partikelutsläpp och tjära produceras samtidigt och kan leda till beläggningsbildning och korrosion. Orsaken till dessa problem är ofta obalans i processen: vissa föreningar anrikas i processen och superjämviktstillstånd är bildas. I denna doktorsavhandling presenteras en ny beräkningsmetod, med vilken man kan beskriva superjämviktstillståndet, de viktigaste kemiska reaktionerna, processens värmeproduktion och tillståndsstorheter samtidigt. Beräkningsmetoden grundar sig på en unik frienergimetod med bivillkor som har utvecklats vid VTT. Den här så kallade CFE-metoden har tidigare utnyttjats i pappers-, metall- och kemiindustrin. Applikationer för bioenergi, vilka är demonstrerade i doktorsavhandlingen, är ett nytt användingsområde för metoden. Studien visade att beräkningsmetoden är väl lämpad för högtemperaturenergiprocesser. Superjämviktstillstånden kan uppstå i dessa processer och det kemiska systemet kan definieras med några bivillkor. Typiska tillämpningar är förbränning av biomassa och svartlut, förgasning av biomassa och uppkomsten av kväveoxider. Också olika sätt att definiera superjämviktstillstånd presenterades i doktorsavhandlingen: empiriska konstanter, empiriska hastighetsuttryck eller reaktionsmekanismer kan användas. Resultaten av doktorsavhandlingen kan utnyttjas i framtiden i processplaneringen och i undersökning av nya tekniska lösningar för förgasning, förbränningsteknik och biobränslen. Den presenterade metoden är ett bra alternativ till de traditionella mekanistiska och fenomenmodeller och kombinerar de bästa delarna av både. --------------------------------------------------------------- Bioenergia on tärkeä osa nykyistä ja tulevaa kotimaista energiapalettia. Mustalipeä, kuori ja metsätähteet kattavat yli viidenneksen kotimaisesta energian kulutuksesta. Tuotantolaitokset eivät kuitenkaan aina toimi täydellisesti ja niiden prosesseissa syntyy erilaisia kaasu- ja hiukkaspäästöjä, tervoja sekä prosessilaitteita kuluttavia saostumia ja ruostumista. Usein syy näihin ongelmiin on prosessissa esiintyvä epätasapainotila: tietyt yhdisteet rikastuvat prosessissa ja muodostavat supertasapainotiloja. Väitöstyössä kehitettiin uusi laskentamenetelmä, jolla voidaan kuvata nämä supertasapainotilat, tärkeimmät niihin liittyvät kemialliset reaktiot, prosessin lämmöntuotanto ja tilansuureet yhtä aikaa. Laskentamenetelmä perustuu VTT:llä kehitettyyn ainutlaatuiseen rajoitettuun vapaaenergiamenetelmään. Tätä niin kutsuttua CFE-menetelmää on aiemmin sovelluttu onnistuneesti muun muassa paperi-, metalli- ja kemianteollisuudessa. Väitöstyössä esitetyt bioenergiasovellukset ovat uusi sovellusalue menetelmälle. Työ osoitti laskentatavan soveltuvan hyvin korkealämpöisiin energiatekniikan prosesseihin, joissa kemiallista systeemiä rajoittavia tekijöitä oli rajallinen määrä ja siten super-tasapainotila saattoi muodostua prosessin aikana. Tyypillisiä sovelluskohteita ovat biomassan ja mustalipeän poltto, biomassan kaasutus ja typpioksidipäästöt. Työn aikana arvioitiin myös erilaisia tapoja määritellä super-tasapainojen muodostumista rajoittavat tekijät. Rajoitukset voitiin tehdä teollisiin mittauksiin pohjautuen, kokeellisia malleja hyödyntäen tai mekanistiseen reaktiokinetiikkaan perustuen. Tulevaisuudessa väitöstyön tuloksia voidaan hyödyntää prosessisuunnittelussa ja tutkittaessa uusia teknisiä ratkaisuja kaasutus- ja polttotekniikoissa sekä biopolttoaineiden tutkimuksessa. Kehitetty menetelmä tarjoaa hyvän vaihtoehdon perinteisille mekanistisille ja ilmiömalleille yhdistäen näiden parhaita puolia.
Resumo:
Successful management of rivers requires an understanding of the fluvial processes that govern them. This, in turn cannot be achieved without a means of quantifying their geomorphology and hydrology and the spatio-temporal interactions between them, that is, their hydromorphology. For a long time, it has been laborious and time-consuming to measure river topography, especially in the submerged part of the channel. The measurement of the flow field has been challenging as well, and hence, such measurements have long been sparse in natural environments. Technological advancements in the field of remote sensing in the recent years have opened up new possibilities for capturing synoptic information on river environments. This thesis presents new developments in fluvial remote sensing of both topography and water flow. A set of close-range remote sensing methods is employed to eventually construct a high-resolution unified empirical hydromorphological model, that is, river channel and floodplain topography and three-dimensional areal flow field. Empirical as well as hydraulic theory-based optical remote sensing methods are tested and evaluated using normal colour aerial photographs and sonar calibration and reference measurements on a rocky-bed sub-Arctic river. The empirical optical bathymetry model is developed further by the introduction of a deep-water radiance parameter estimation algorithm that extends the field of application of the model to shallow streams. The effect of this parameter on the model is also assessed in a study of a sandy-bed sub-Arctic river using close-range high-resolution aerial photography, presenting one of the first examples of fluvial bathymetry modelling from unmanned aerial vehicles (UAV). Further close-range remote sensing methods are added to complete the topography integrating the river bed with the floodplain to create a seamless high-resolution topography. Boat- cart- and backpack-based mobile laser scanning (MLS) are used to measure the topography of the dry part of the channel at a high resolution and accuracy. Multitemporal MLS is evaluated along with UAV-based photogrammetry against terrestrial laser scanning reference data and merged with UAV-based bathymetry to create a two-year series of seamless digital terrain models. These allow the evaluation of the methodology for conducting high-resolution change analysis of the entire channel. The remote sensing based model of hydromorphology is completed by a new methodology for mapping the flow field in 3D. An acoustic Doppler current profiler (ADCP) is deployed on a remote-controlled boat with a survey-grade global navigation satellite system (GNSS) receiver, allowing the positioning of the areally sampled 3D flow vectors in 3D space as a point cloud and its interpolation into a 3D matrix allows a quantitative volumetric flow analysis. Multitemporal areal 3D flow field data show the evolution of the flow field during a snow-melt flood event. The combination of the underwater and dry topography with the flow field yields a compete model of river hydromorphology at the reach scale.
Resumo:
The shift towards a knowledge-based economy has inevitably prompted the evolution of patent exploitation. Nowadays, patent is more than just a prevention tool for a company to block its competitors from developing rival technologies, but lies at the very heart of its strategy for value creation and is therefore strategically exploited for economic pro t and competitive advantage. Along with the evolution of patent exploitation, the demand for reliable and systematic patent valuation has also reached an unprecedented level. However, most of the quantitative approaches in use to assess patent could arguably fall into four categories and they are based solely on the conventional discounted cash flow analysis, whose usability and reliability in the context of patent valuation are greatly limited by five practical issues: the market illiquidity, the poor data availability, discriminatory cash-flow estimations, and its incapability to account for changing risk and managerial flexibility. This dissertation attempts to overcome these impeding barriers by rationalizing the use of two techniques, namely fuzzy set theory (aiming at the first three issues) and real option analysis (aiming at the last two). It commences with an investigation into the nature of the uncertainties inherent in patent cash flow estimation and claims that two levels of uncertainties must be properly accounted for. Further investigation reveals that both levels of uncertainties fall under the categorization of subjective uncertainty, which differs from objective uncertainty originating from inherent randomness in that uncertainties labelled as subjective are highly related to the behavioural aspects of decision making and are usually witnessed whenever human judgement, evaluation or reasoning is crucial to the system under consideration and there exists a lack of complete knowledge on its variables. Having clarified their nature, the application of fuzzy set theory in modelling patent-related uncertain quantities is effortlessly justified. The application of real option analysis to patent valuation is prompted by the fact that both patent application process and the subsequent patent exploitation (or commercialization) are subject to a wide range of decisions at multiple successive stages. In other words, both patent applicants and patentees are faced with a large variety of courses of action as to how their patent applications and granted patents can be managed. Since they have the right to run their projects actively, this flexibility has value and thus must be properly accounted for. Accordingly, an explicit identification of the types of managerial flexibility inherent in patent-related decision making problems and in patent valuation, and a discussion on how they could be interpreted in terms of real options are provided in this dissertation. Additionally, the use of the proposed techniques in practical applications is demonstrated by three fuzzy real option analysis based models. In particular, the pay-of method and the extended fuzzy Black-Scholes model are employed to investigate the profitability of a patent application project for a new process for the preparation of a gypsum-fibre composite and to justify the subsequent patent commercialization decision, respectively; a fuzzy binomial model is designed to reveal the economic potential of a patent licensing opportunity.
Resumo:
Rough turning is an important form of manufacturing cylinder-symmetric parts. Thus far, increasing the level of automation in rough turning has included process monitoring methods or adaptive turning control methods that aim to keep the process conditions constant. However, in order to improve process safety, quality and efficiency, an adaptive turning control should be transformed into an intelligent machining system optimizing cutting values to match process conditions or to actively seek to improve process conditions. In this study, primary and secondary chatter and chip formation are studied to understand how to measure the effect of these phenomena to the process conditions and how to avoid undesired cutting conditions. The concept of cutting state is used to address the combination of these phenomena and the current use of the power capacity of the lathe. The measures to the phenomena are not developed based on physical measures, but instead, the severity of the measures is modelled against expert opinion. Based on the concept of cutting state, an expert system style fuzzy control system capable of optimizing the cutting process was created. Important aspects of the system include the capability to adapt to several cutting phenomena appearing at once, even if the said phenomena would potentially require conflicting control action.
Resumo:
Osmotic dehydration of cherry tomato as influenced by osmotic agent (sodium chloride and a mixed sodium chloride and sucrose solutions) and solution concentration (10 and 25% w/w) at room temperature (25°C) was studied. Kinetics of water loss and solids uptake were determined by a two parameter model, based on Fick's second law and applied to spherical geometry. The water apparent diffusivity coefficients obtained ranged from 2.17x10-10 to 11.69x10-10 m²/s.
Resumo:
The energy consumption of IT equipments is becoming an issue of increasing importance. In particular, network equipments such as routers and switches are major contributors to the energy consumption of internet. Therefore it is important to understand how the relationship between input parameters such as bandwidth, number of active ports, traffic-load, hibernation-mode and their impact on energy consumption of a switch. In this paper, the energy consumption of a switch is analyzed in extensive experiments. A fuzzy rule-based model of energy consumption of a switch is proposed based on the result of experiments. The model can be used to predict the energy saving when deploying new switches by controlling the parameters to achieve desired energy consumption and subsequent performance. Furthermore, the model can also be used for further researches on energy saving techniques such as energy-efficient routing protocol, dynamic link shutdown, etc.
Resumo:
A theoretical model is used to predict the growth of Staphylococcus aureus in a pasteurized meat product kept at ambient temperatures for several hours. For this purpose, the temperature profiles of some cities of Mexico were combined with literature data on the kinetics of S. aureus growth. As shown by theoretical predictions, if the food is kept at ambient temperature, the average daily temperature may not give accurate predictions.
Resumo:
The two central goals of this master's thesis are to serve as a guidebook on the determination of uncertainty in efficiency measurements and to investigate sources of uncertainty in efficiency measurements in the field of electric drives by a literature review, mathematical modeling and experimental means. The influence of individual sources of uncertainty on the total instrumental uncertainty is investigated with the help of mathematical models derived for a balance and a direct air cooled calorimeter. The losses of a frequency converter and an induction motor are measured with the input-output method and a balance calorimeter at 50 and 100 % loads. A software linking features of Matlab and Excel is created to process measurement data, calculate uncertainties and to calculate and visualize results. The uncertainties are combined with both the worst case and the realistic perturbation method and distributions of uncertainty by source are shown based on experimental results. A comparison of the calculated uncertainties suggests that the balance calorimeter determines losses more accurately than the input-output method with a relative RPM uncertainty of 1.46 % compared to 3.78 - 12.74 % respectively with 95 % level of confidence at the 93 % induction motor efficiency or higher. As some principles in uncertainty analysis are open to interpretation the views and decisions of the analyst can have noticeable influence on the uncertainty in the measurement result.