935 resultados para Ultrasonic bath
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with NO. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas at five temperatures in the range 299-592 K. The second-order rate constants at 10 Torr fitted the Arrhenius equation log(k/cm(3) molecule(-1) s(-1)) = (- 11.66 +/- 0.01) + (6.20 +/- 0.10 kJ mol(-1))IRT In 10 The rate constants showed a variation with pressure of a factor of ca. 2 over the available range, almost independent of temperature. The data could not be fitted by RRKM calculations to a simple third body assisted association reaction alone. However, a mechanistic model with an additional (pressure independent) side channel gave a reasonable fit to the data. Ab initio calculations at the G3 level supported a mechanism in which the initial adduct, bent H2SiNO, can ring close to form cyclo-H2SiNO, which is partially collisionally stabilized. In addition, bent H2SiNO can undergo a low barrier isomerization reaction leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are NH2 + SiO. The rate controlling barrier for this latter pathway is only 16 kJ mol(-1) below the energy of SiH2 + NO. This is consistent with the kinetic findings. A particular outcome of this work is that, despite the pressure dependence and the effects of the secondary barrier (in the side reaction), the initial encounter of SiH2 with NO occurs at the collision rate. Thus, silylene can be as reactive with odd electron molecules as with many even electron species. Some comparisons are drawn with the reactions of CH2 + NO and SiCl2 + NO.
Resumo:
Time-resolved kinetic studies of the reaction of dideutero-silylene, SiD2, generated by laser flash photolysis of phenylsilane-d(3), have been carried out to obtain rate constants for its bimolecular reaction with C2H2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equation log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.05 +/- 0.05) + (3.43 +/- 0.36 kJ mol(-1))/RT ln 10. The rate constants were used to obtain a comprehensive set of isotope effects by comparison with earlier obtained rate constants for the reactions of SiH2 with C2H2 and C2D2. Additionally, pressure-dependent rate constants for the reaction of SiH2 with C2H2 in the presence of He (1-100 Tort) were obtained at 300, 399, and 613 K. Quantum chemical (ab initio) calculations of the SiC2H4 reaction system at the G3 level support the initial formation of silirene, which rapidly isomerizes to ethynylsilane as the major pathway. Reversible formation of vinylsilylene is also an important process. The calculations also indicate the involvement of several other intermediates, not previously suggested in the mechanism. RRKM calculations are in semiquantitative agreement with the pressure dependences and isotope effects suggested by the ab initio calculations, but residual discrepancies suggest the possible involvement of the minor reaction channel, SiH2 + C2H2 - SWPO + C2H4. The results are compared and contrasted with previous studies of this reaction system.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 296 and at 339 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied over the pressure range 10-200 Torr with SF6 as bath gas. The second-order rate constants obtained were pressure dependent, indicating that the reaction is a third-body assisted association process. Rate constants at 339 K were about half those at 296 K. Isotope effects, k(H)/k(D), were small averaging 1.076 0.080, suggesting no involvement of H- (or D-) atom transfer in the rate determining step. RRKM modeling was undertaken based on a transition state appropriate to formation of the expected zwitterionic donoracceptor complex, H2Si...OH2. Because the reaction is close to the low pressure (third order) region, it is difficult to be definitive about the activated complex structure. Various structures were tried, both with and without the incorporation of rotational modes, leading to values for the high-pressure limiting (i.e., true secondorder) rate constant in the range 9.5 x 10(-11) to 5 x 10(-10) cm(3) molecule' s(-1). The RRKM modeling and mechanistic interpretation is supported by ab initio quantum calculations carried out at the G2 and G3 levels. The results are compared and contrasted with the previous studies.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with HCL The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas, at five temperatures in the range of 296-611 K. The second-order rate constants fitted the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.51 +/- 0.06) + (1.92 +/- 0.47 kJ mol(-1))/RTIn10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range of 10-100 Torr, but showed small decreases in value of no more than 20% ( +/- 10%) at I Toff, at both the highest and lowest temperatures. The data are consistent with formation of an initial weakly bound donor-acceptor complex, which reacts by two parallel pathways. The first is by chlorine-to-silicon H-shift to make vibrationally excited chlorosilane, SiH3Cl*, which yields HSiCl by H-2 elimination from silicon. In the second pathway, the complex proceeds via H-2 elimination (4-center process) to make chlorosilylene, HSiCl, directly. This interpretation is supported by ab initio quantum calculations carried out at the G3 level which reveal the direct H-2 elimination route for the first time. RRKM modeling predicts the approximate magnitude of the pressure effect but is unable to determine the proportions of each pathway. The experimental data agree with the only previous measurements at room temperature. Comparisons with other reactions of SiH2 are also drawn.
Resumo:
Time resolved studies of silylene, SiH2, generated by the 193 nm laser. ash photolysis of phenylsilane, have been carried out to obtain rate coefficients for its bimolecular reactions with methyl-, dimethyl- and trimethyl-silanes in the gas phase. The reactions were studied over the pressure range 3 - 100 Torr with SF6 as bath gas and at five temperatures in the range 300 - 625 K. Only slight pressure dependences were found for SiH2 + MeSiH3 ( 485 and 602 K) and for SiH2 + Me2SiH2 ( 600 K). The high pressure rate constants gave the following Arrhenius parameters: [GRAPHICS] These are consistent with fast, near to collision-controlled, association processes. RRKM modelling calculations are consistent with the observed pressure dependences ( and also the lack of them for SiH2 + Me3SiH). Ab initio calculations at both second order perturbation theory (MP2) and coupled cluster (CCSD(T)) levels, showed the presence of weakly-bound complexes along the reaction pathways. In the case of SiH2 + MeSiH3 two complexes, with different geometries, were obtained consistent with earlier studies of SiH2 + SiH4. These complexes were stabilised by methyl substitution in the substrate silane, but all had exceedingly low barriers to rearrangement to product disilanes. Although methyl groups in the substrate silane enhance the intrinsic SiH2 insertion rates, it is doubtful whether the intermediate complexes have a significant effect on the kinetics. A further calculation on the reaction MeSiH + SiH4 shows that the methyl substitution in the silylene should have a much more significant kinetic effect ( as observed in other studies).
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 297 K and at 345 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied independently as a function of H2O (or D2O) and SF6 (bath gas) pressures. At a fixed pressure of SF6 (5 Torr), [SiH2] decay constants, k(obs), showed a quadratic dependence on [H2O] or [D2O]. At a fixed pressure of H2O or D2O, k(obs) Values were strongly dependent on [SF6]. The combined rate expression is consistent with a mechanism involving the reversible formation of a vibrationally excited zwitterionic donor-acceptor complex, H2Si...OH2 (or H2Si...OD2). This complex can then either be stabilized by SF6 or it reacts with a further molecule of H2O (or D2O) in the rate-determining step. Isotope effects are in the range 1.0-1.5 and are broadly consistent with this mechanism. The mechanism is further supported by RRKM theory, which shows the association reaction to be close to its third-order region of pressure (SF6) dependence. Ab initio quantum calculations, carried out at the G3 level, support the existence of a hydrated zwitterion H2Si...(OH2)(2), which can rearrange to hydrated silanol, with an energy barrier below the reaction energy threshold. This is the first example of a gas-phase-catalyzed silylene reaction.
Resumo:
The interactions of sodium dodecyl sulfate (SDS) with poly(ethylene oxide)/poly(alkylene oxide) (E/A) block copolymers are explored in this study: With respect to the specific compositional characteristics of the copolymer, introduction of SDS can induce fundamentally different effects to the self-assembly behavior of E/A copolymer solutions. In the case of the E18B10-SDS system (E = poly(ethylene oxide) and B = poly(butylene oxide)) development of large surfactant-polymer aggregates was observed. In the case of B20E610-SDS, B12E227B12-SDS, E40B10E40-SDS, E19P43E19-SDS (P = poly(propylene oxide)), the formation of smaller particles compared to pure polymeric micelles points to micellar suppression induced by the ionic surfactant. This effect can be ascribed to a physical binding between the hydrophobic block of unassociated macromolecules and the non-polar tail of the surfactant. Analysis of critical micelle concentrations (cmc*) of polymer-surfactant aqueous solutions within the framework of regular solution theory for binary surfactants revealed negative deviations from ideal behavior for E40B10E40-SDS and E19P43E19-SDS, but positive deviations for E18B10-SDS. Ultrasonic studies performed for the E19P43E19-SDS system enabled the identification of three distinct regions, corresponding to three main steps of the complexation; SDS absorption to the hydrophobic backbone of polymer, development of polymer-surfactant complexes and gradual breakdown of the mixed aggregates. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The perceived wisdom about thin sheet fracture is that (i) the crack propagates under mixed mode I & III giving rise to a slant through-thickness fracture profile and (ii) the fracture toughness remains constant at low thickness and eventually decreases with increasing thickness. In the present study, fracture tests performed on thin DENT plates of various thicknesses made of stainless steel, mild steel, 6082-O and NS4 aluminium alloys, brass, bronze, lead, and zinc systematically exhibit (i) mode I “bath-tub”, i.e. “cup & cup”, fracture profiles with limited shear lips and significant localized necking (more than 50% thickness reduction), (ii) a fracture toughness that linearly increases with increasing thickness (in the range of 0.5–5 mm). The different contributions to the work expended during fracture of these materials are separated based on dimensional considerations. The paper emphasises the two parts of the work spent in the fracture process zone: the necking work and the “fracture” work. Experiments show that, as expected, the work of necking per unit area linearly increases with thickness. For a typical thickness of 1 mm, both fracture and necking contributions have the same order of magnitude in most of the metals investigated. A model is developed in order to independently evaluate the work of necking, which successfully predicts the experimental values. Furthermore, it enables the fracture energy to be derived from tests performed with only one specimen thickness. In a second modelling step, the work of fracture is computed using an enhanced void growth model valid in the quasi plane stress regime. The fracture energy varies linearly with the yield stress and void spacing and is a strong function of the hardening exponent and initial void volume fraction. The coupling of the two models allows the relative contributions of necking versus fracture to be quantified with respect to (i) the two length scales involved in this problem, i.e. the void spacing and the plate thickness, and (ii) the flow properties of the material. Each term can dominate depending on the properties of the material which explains the different behaviours reported in the literature about thin plate fracture toughness and its dependence with thickness.
Resumo:
Gluten was extracted from flours of several different wheat varieties of varying baking quality. Creep compliance was measured at room temperature and tan 6 was measured over a range of temperatures from 25 to 95 degrees C. The extracted glutens were heat-treated for 20 min at 25, 40, 50, 60, 70 and 90 degrees C in a water bath, freeze-dried and ground to a fine powder. Tests were carried out for extractability in sodium dodecyl sulphate, free sulphydryl (SH) groups using Ellman's method, surface hydrophobicity and molecular weight (MW) distribution (MWD) using field-flow fractionation and multi-angle laser light scattering. With increasing temperature, the glutens showed a decrease in extractability, with the most rapid decreases occurring between 70 and 90 degrees C, a major transition in tan 6 at around 60 degrees C and a minor transition at 40 degrees C for most varieties, a decrease in free SH groups and surface hydrophobicity and a shift in the MWD towards higher MW. The poor bread-making variety Riband showed the highest values of tan delta and Newtonian compliance, the lowest content of free SH groups and the largest increase of HMW/LMW with increasing temperature. No significant correlations with baking volume were found between any of the measured parameters. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
sSPI, 7S, and 11S globulin at 12% (w/v) protein concentration, at neutral pH, did not form gels when heat-treated (90 degreesC, 15 min) or when high pressure-treated (300-700 MPa), except for the I IS, which formed a gel when heat-treated. The combination of heat and pressure (that is heating the solutions in a water bath and then pressure-treating at room temperature or the reverse sequence), led to differences: when heat-treatment was before high-pressure treatment, only the I IS fraction formed a self-standing gel; however, when the solutions were pressurised before heat treatment, all the proteins formed self-standing gels. The textural and water-holding properties were measured on the gels formed with the three different soy proteins. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A combined mathematical model for predicting heat penetration and microbial inactivation in a solid body heated by conduction was tested experimentally by inoculating agar cylinders with Salmonella typhimurium or Enterococcus faecium and heating in a water bath. Regions of growth where bacteria had survived after heating were measured by image analysis and compared with model predictions. Visualisation of the regions of growth was improved by incorporating chromogenic metabolic indicators into the agar. Preliminary tests established that the model performed satisfactorily with both test organisms and with cylinders of different diameter. The model was then used in simulation studies in which the parameters D, z, inoculum size, cylinder diameter and heating temperature were systematically varied. These simulations showed that the biological variables D, z and inoculum size had a relatively small effect on the time needed to eliminate bacteria at the cylinder axis in comparison with the physical variables heating temperature and cylinder diameter, which had a much greater relative effect. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Several studies have highlighted the importance of the cooling period in oil absorption in deep-fat fried products. Specifically, it has been established that the largest proportion of oil which ends up into the food, is sucked into the porous crust region after the fried product is removed from the oil bath, stressing the importance of this time interval. The main objective of this paper was to develop a predictive mechanistic model that can be used to understand the principles behind post-frying cooling oil absorption kinetics, which can also help identifying the key parameters that affect the final oil intake by the fried product. The model was developed for two different geometries, an infinite slab and an infinite cylinder, and was divided into two main sub-models, one describing the immersion frying period itself and the other describing the post-frying cooling period. The immersion frying period was described by a transient moving-front model that considered the movement of the crust/core interface, whereas post-frying cooling oil absorption was considered to be a pressure driven flow mediated by capillary forces. A key element in the model was the hypothesis that oil suction would only begin once a positive pressure driving force had developed. The mechanistic model was based on measurable physical and thermal properties, and process parameters with no need of empirical data fitting, and can be used to study oil absorption in any deep-fat fried product that satisfies the assumptions made.
Resumo:
Metallized plastics have recently received significant interest for their useful applications in electronic devices such as for integrated circuits, packaging, printed circuits and sensor applications. In this work the metallized films were developed by electroless copper plating of polyethylene films grafted with vinyl ether of monoethanoleamine. There are several techniques for metal deposition on surface of polymers such as evaporation, sputtering, electroless plating and electrolysis. In this work the metallized films were developed by electroless copper plating of polyethylene films grafted with vinyl ether of monoethanoleamine. Polyethylene films were subjected to gamma-radiation induced surface graft copolymerization with vinyl ether of monoethanolamine. Electroless copper plating was carried out effectively on the modified films. The catalytic processes for the electroless copper plating in the presence and the absence of SnCl2 sensitization were studied and the optimum activation conditions that give the highest plating rate were determined. The effect of grafting degree on the plating rate is studied. Electroless plating conditions (bath additives, pH and temperature) were optimized. Plating rate was determined gravimetrically and spectrophotometrically at different grafting degrees. The results reveal that plating rate is a function of degree of grafting and increases with increasing grafted vinyl ether of monoethanolamine onto polyethylene. It was found that pH 13 of electroless bath and plating temperature 40°C are the optimal conditions for the plating process. The increasing of grafting degree results in faster plating rate at the same pH and temperature. The surface morphology of the metallized films was investigated using scanning electron microscopy (SEM). The adhesion strength between the metallized layer and grafted polymer was studied using tensile machine. SEM photos and adhesion measurements clarified that uniform and adhered deposits were obtained under optimum conditions.
Resumo:
In this paper a look is taken at how the use of implant technology can be used to either increase the range of the abilities of a human and/or diminish the effects of a neural illness, such as Parkinson's Disease. The key element is the need for a clear interface linking the human brain directly with a computer. The area of interest here is the use of implant technology, particularly where a connection is made between technology and the human brain and/or nervous system. Pilot tests and experimentation are invariably carried out apriori to investigate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies are discussed here. The paper goes on to describe human experimentation, in particular that carried out by the author himself, which led to him receiving a neural implant which linked his nervous system bi-directionally with the internet. With this in place neural signals were transmitted to various technological devices to directly control them. In particular, feedback to the brain was obtained from the fingertips of a robot hand and ultrasonic (extra) sensory input. A view is taken as to the prospects for the future, both in the near term as a therapeutic device and in the long term as a form of enhancement.
Resumo:
Researchers at the University of Reading have developed over many years some simple mobile robots that explore an environment they perceive through simple ultrasonic sensors. Information from these sensors has allowed the robots to learn the simple task of moving around while avoiding dynamic obstacles using a static set of fuzzy automata, the choice of which has been criticised, due to its arbitrary nature. This paper considers how a dynamic set of automata can overcome this criticism. In addition, a new reinforcement learning function is outlined which is both scalable to different numbers and types of sensors. The innovations compare successfully with earlier work.