971 resultados para Trussed beams


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Plasma Focus is a device designed to generate a plasma sheet between two coaxial electrodes by means of a high voltage difference. The plasma is then driven to collapse into a “pinch”, where thermonuclear conditions prevail. During the “pinch phase” charged particles are emitted, with two main components: an ion beam peaked forward and an electron beam directed backward. The electron beam emitted backward by Plasma Focus devices is being investigated as a radiation source for medical applications, using it to produce x-rays by interaction with appropriate targets (through bremsstrahlung and characteristic emission). A dedicated Plasma Focus device, named PFMA-3 (Plasma Focus for Medical Applications number 3), has been designed, put in operation and tested by the research groups of the Universities of Bologna and Ferrara. The very high dose rate (several gray per discharge, in less than 1 µs) is a peculiarity of this device that has to be investigated, as it might modify the relative biological effectiveness (RBE). Aim of this Ph.D. project was to investigate the main physical properties of the low-energy x-ray beams produced by a Plasma Focus device and their potential medical applications to IORT treatments. It was necessary to develop the optimal geometrical configuration; to evaluate the x-rays produced and their dose deposited; to estimate the energy electron spectrum produced in the “pinch phase”; to study an optimal target for the conversion of the x-rays; to conduct simulations to study the physics involved; and in order to evaluate the radio-biological features of the beam, cell holders had to be developed for both irradiations and cell growth conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proton-nucleus elastic scattering at intermediate energies is a well-established method for the investigation of the nuclear matter distribution in stable nuclei and was recently applied also for the investigation of radioactive nuclei using the method of inverse kinematics. In the current experiment, the differential cross sections for proton elastic scattering on the isotopes $^{7,9,10,11,12,14}$Be and $^8$B were measured. The experiment was performed using the fragment separator at GSI, Darmstadt to produce the radioactive beams. The main part of the experimental setup was the time projection ionization chamber IKAR which was simultaneously used as hydrogen target and a detector for the recoil protons. Auxiliary detectors for projectile tracking and isotope identification were also installed. As results from the experiment, the absolute differential cross sections d$sigma$/d$t$ as a function of the four momentum transfer $t$ were obtained. In this work the differential cross sections for elastic p-$^{12}$Be, p-$^{14}$Be and p-$^{8}$B scattering at low $t$ ($t leq$~0.05~(GeV/c)$^2$) are presented. The measured cross sections were analyzed within the Glauber multiple-scattering theory using different density parameterizations, and the nuclear matter density distributions and radii of the investigated isotopes were determined. The analysis of the differential cross section for the isotope $^{14}$Be shows that a good description of the experimental data is obtained when density distributions consisting of separate core and halo components are used. The determined {it rms} matter radius is $3.11 pm 0.04 pm 0.13$~fm. In the case of the $^{12}$Be nucleus the results showed an extended matter distribution as well. For this nucleus a matter radius of $2.82 pm 0.03 pm 0.12$~fm was determined. An interesting result is that the free $^{12}$Be nucleus behaves differently from the core of $^{14}$Be and is much more extended than it. The data were also compared with theoretical densities calculated within the FMD and the few-body models. In the case of $^{14}$Be, the calculated cross sections describe the experimental data well while, in the case of $^{12}$Be there are discrepancies in the region of high momentum transfer. Preliminary experimental results for the isotope $^8$B are also presented. An extended matter distribution was obtained (though much more compact as compared to the neutron halos). A proton halo structure was observed for the first time with the proton elastic scattering method. The deduced matter radius is $2.60pm 0.02pm 0.26$~fm. The data were compared with microscopic calculations in the frame of the FMD model and reasonable agreement was observed. The results obtained in the present analysis are in most cases consistent with the previous experimental studies of the same isotopes with different experimental methods (total interaction and reaction cross section measurements, momentum distribution measurements). For future investigation of the structure of exotic nuclei a universal detector system EXL is being developed. It will be installed at the NESR at the future FAIR facility where higher intensity beams of radioactive ions are expected. The usage of storage ring techniques provides high luminosity and low background experimental conditions. Results from the feasibility studies of the EXL detector setup, performed at the present ESR storage ring, are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bis heute ist die Frage nicht geklärt, warum bei der Entstehung des Universums Materie gegenüber der Antimaterie bevorzugt war und das heutige Materieuniversum entstanden ist. Eine Voraussetzung für die Entstehung dieser Materie-Antimaterie-Asymmetrie ist die Verletzung der Kombination von Ladungs- (C) und Punktsymmetrie (P), die CP-Verletzung. CP-Verletzung kann sich unter anderem in den Zerfällen K+- -> pi+- pi0 pi0 zeigen. Die NA48/2"=Kollaboration zeichnete während den Jahren 2003 und 2004 über 200~TB Daten von Zerfällen geladener Kaonen auf. In dieser Arbeit wurde die CP"=verletzende Asymmetrie der Zerfälle K+- -> pi+- pi0 pi0 mit über 90~Millionen ausgewählten Ereignissen aus diesem Datensatz gemessen. Vorhersagen im Standardmodell der Teilchenphysik sagen hier eine CP"=verletzende Asymmetrie in der Größenordnung zwischen $10^{-6}$ und $10^{-5}$ voraus. In Modellen außerhalb des Standardmodells kann es aber auch größere Asymmetrien geben. Das NA48/2"=Experiment war darauf ausgelegt, mögliche systematische Unsicherheiten zu begrenzen. Um dies zu erreichen, wurden positive und negative Kaonen simultan an einem Target erzeugt und ihr Impuls durch ein Strahlsystem mit zwei Strahlengängen auf ca. $60~GeV/c$ begrenzt. Die Strahlen wurden auf wenige Millimeter genau überlagert in die Zerfallsregion geleitet. Die Strahlengänge von positiven und negativen Kaonen sowie die Polarität des Magneten des Impulsspektrometers wurden regelmäßig gewechselt. Dies erlaubte eine Symmetrisierung von Strahlführung und Detektor für positive und negative Kaonen während der Analyse. Durch ein Vierfachverhältnis der vier Datensätze mit den unterschiedlichen Konfigurationen konnte sichergestellt werden, dass alle durch Strahlführung oder Detektor erzeugten Asymmetrien sich in erster Ordnung aufheben. Um die unterschiedlichen Produktionsspektren von positiven und negativen Kaonen auszugleichen wurde in dieser Arbeit eine Ereignisgewichtung durchgeführt. Die Analyse wurde auf mögliche systematische Unsicherheiten untersucht. Dabei zeigte sich, dass die systematischen Unsicherheiten in der Analyse deutlich kleiner als der statistischer Fehler sind. Das Ergebnis der Messung des die CP-verletzende Asymmetrie beschreibenden Parameters $A_g$ ist: begin{equation} A_g= (1,2 pm 1,7_{mathrm{(stat)}} pm 0,7_{mathrm{(sys)}}) cdot 10^{-4}. end{equation} Diese Messung ist fast zehnmal genauer als bisherige Messungen und stimmt innerhalb ihrer Unsicherheit mit dem Standardmodell überein. Modelle, die eine größere CP-Verletzung in diesem Zerfall vorhersagen, können ausgeschlossen werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electric dipole response of neutron-rich nickel isotopes has been investigated using the LAND setup at GSI in Darmstadt (Germany). Relativistic secondary beams of 56−57Ni and 67−72Ni at approximately 500 AMeV have been generated using projectile fragmentation of stable ions on a 4 g/cm2 Be target and subsequent separation in the magnetic dipole fields of the FRagment Separator (FRS). After reaching the LAND setup in Cave C, the radioactive ions were excited electromagnetically in the electric field of a Pb target. The decay products have been measured in inverse kinematics using various detectors. Neutron-rich 67−69Ni isotopes decay by the emission of neutrons, which are detected in the LAND detector. The present analysis concentrates on the (gamma,n) and (gamma,2n) channels in these nuclei, since the proton and three-neutron thresholds are unlikely to be reached considering the virtual photon spectrum for nickel ions at 500 AMeV. A measurement of the stable 58Ni isotope is used as a benchmark to check the accuracy of the present results with previously published data. The measured (gamma,n) and (gamma,np) channels are compared with an inclusive photoneutron measurement by Fultz and coworkers, which are consistent within the respective errors. The measured excitation energy distributions of 67−69Ni contain a large portion of the Giant Dipole Resonance (GDR) strength predicted by the Thomas-Reiche-Kuhn energy-weighted sum rule, as well as a significant amount of low-lying E1 strength, that cannot be attributed to the GDR alone. The GDR distribution parameters are calculated using well-established semi-empirical systematic models, providing the peak energies and widths. The GDR strength is extracted from the chi-square minimization of the model GDR to the measured data of the (gamma,2n) channel, thereby excluding any influence of eventual low-lying strength. The subtraction of the obtained GDR distribution from the total measured E1 strength provides the low-lying E1 strength distribution, which is attributed to the Pygmy Dipole Resonance (PDR). The extraction of the peak energy, width and strength is performed using a Gaussian function. The minimization of trial Gaussian distributions to the data does not converge towards a sharp minimum. Therefore, the results are presented by a chi-square distribution as a function of all three Gaussian parameters. Various predictions of PDR distributions exist, as well as a recent measurement of the 68Ni pygmy dipole-resonance obtained by virtual photon scattering, to which the present pygmy dipole-resonance distribution is also compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical frequency comb technology has been used in this work for the first time to investigate the nuclear structure of light radioactive isotopes. Therefore, three laser systems were stabilized with different techniques to accurately known optical frequencies and used in two specialized experiments. Absolute transition frequency measurements of lithium and beryllium isotopes were performed with accuracy on the order of 10^(−10). Such a high accuracy is required for the light elements since the nuclear volume effect has only a 10^(−9) contribution to the total transition frequency. For beryllium, the isotope shift was determined with an accuracy that is sufficient to extract information about the proton distribution inside the nucleus. A Doppler-free two-photon spectroscopy on the stable lithium isotopes (6,7)^Li was performed in order to determine the absolute frequency of the 2S → 3S transition. The achieved relative accuracy of 2×10^(−10) is improved by one order of magnitude compared to previous measurements. The results provide an opportunity to determine the nuclear charge radius of the stable and short-lived isotopes in a pure optical way but this requires an improvement of the theoretical calculations by two orders of magnitude. The second experiment presented here was performed at ISOLDE/CERN, where the absolute transition frequencies of the D1 and D2 lines in beryllium ions for the isotopes (7,9,10,11)^Be were measured with an accuracy of about 1 MHz. Therefore, an advanced collinear laser spectroscopy technique involving two counter-propagating frequency-stabilized laser beams with a known absolute frequency was developed. The extracted isotope shifts were combined with recent accurate mass shift calculations and the root-mean square nuclear charge radii of (7,10)^Be and the one-neutron halo nucleus 11^Be were determined. Obtained charge radii are decreasing from 7^Be to 10^Be and increasing again for 11^Be. While the monotone decrease can be explained by a nucleon clustering inside the nucleus, the pronounced increase between 10^Be and 11^Be can be interpreted as a combination of two contributions: the center-of-mass motion of the 10^Be core and a change of intrinsic structure of the core. To disentangle these two contributions, the results from nuclear reaction measurements were used and indicate that the center-of-mass motion is the dominant effect. Additionally, the splitting isotope shift, i.e. the difference in the isotope shifts between the D1 and D2 fine structure transitions, was determined. This shows a good consistency with the theoretical calculations and provides a valuable check of the beryllium experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dieser Arbeit wird eine kontinuierliche, kohärente Strahlungsquelle bei 121,56nm, der Lyman-alpha Linie in Wasserstoff, vorgestellt. Diese Lyman-alpha Quelle soll zur zukünftigen Laserkühlung von Antiwasserstoff dienen. Die Strahlung wird durch Vier-Wellen-Mischen in Quecksilberdampf produziert. Dabei wird ein Festkörperlasersystem zur Erzeugung der Fundamentalstrahlen eingesetzt. Zur Erhöhung der nichtlinearen Suszeptibilität wird die 6^1S-7^1S Zwei-Photonen-Resonanz ausgenutzt. Zusätzlich wird mit Hilfe eines durchstimmbaren ultravioletten Lasersystems die 6^1S-6^3P Ein-Photon-Resonanz genutzt, was es erlaubt, die nichtlineare Suszeptibilität des Mischprozesses um Größenordnungen zu erhöhen. Um den Einfluss der 6^1S-6^3P Ein-Photon-Resonanz zu untersuchen, wurden zunächst die Phasenanpassungstemperaturen bei verschiedenen Verstimmungen der ultravioletten Strahlung zur 6^3P Resonanz vermessen und festgestellt, dass kleinere Verstimmungen zu niedrigeren Phasenanpassungstemperaturen führen. Es konnte sowohl theoretisch wie auch experimentell gezeigt werden, dass diese niedrigeren Phasenanpassungstemperaturen bei kleinen Verstimmungen der Erhöhung der Lyman-alpha Erzeugung durch die größere nichtlineare Suszeptibilität bei kleinen Verstimmungen entgegenwirken. Bei immer kleineren Verstimmungen zur 6^3P Resonanz limitiert die Absorption der ultravioletten Strahlung die Lyman-alpha Erzeugung. Ein positiver Effekt der niedrigeren Phasenanpassungstemperaturen ist, dass es möglich wird, auf das bisher nötige Puffergas in der Quecksilber-Dampfzelle zu verzichten, was die Lyman-alpha Erzeugung um einen Faktor 1,7 erhöht. Damit war es möglich, die bisherige Effizienz der Lyman-alpha Erzeugung zu verbessern. Es wurde eine Lyman-alpha Leistung von 0,3nW erreicht. Zusätzlich zum Einfluss der 6^3P Resonanz auf die Lyman-alpha Erzeugung wurde ein weiterer Effekt beobachtet. Durch die Nähe der 6^1S-6^3P Ein-Photon-Resonanz wird auch mehr Besetzung in das obere 7^1S Niveau der Zwei-Photonen-Resonanz gepumpt. Dadurch konnte erstmals eine kontinuierliche Lasertätigkeit auf der 6^1P-7^1S Linie in Quecksilber bei 1014nm beobachtet werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der vorliegenden Arbeit werden Entwicklungen zur Optimierung von Selektivität und Effizienz von Resonanzionisations-Laserionenquellen vorgestellt. Mit der Perspektive auf die Anwendungen radioaktiver Ionenstrahlen in der Grundlagenforschung sowie auf Fragestellungen in der Ultraspurenanalytik wurden verschiedene Methoden entwickelt und erprobt: Auf Seiten der Grundlagenforschung wurden zwei komplementäre Ansätze, die Konstruktion von Ionenquellen aus Materialien niedriger Austrittsarbeit und die Weiterentwicklung der Laserionenquelle und -falle LIST umgesetzt. Hierdurch konnte die Selektivität der Resonanzionisation in on-line Tests um einige Gröÿenordnungen verbessert werden. Für die Ultraspurenanalytik wurden speziell angepasste, hocheffiziente Ionenquellen entwickelt. Mit diesen Ionenquellen wurde für die Resonanzionisation von Gallium eine Ionisationseffizienz von 67 % demonstriert, für den Ultraspurennachweis des im Zusammenhang der nuklearen Endlagerung wichtigen Radioisotops 99g-Technetium wurde auf dieser Grundlage eine Nachweisgrenze von weniger als 10^6 Atomen gezeigt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, a strategy to model the behavior of fluids and their interaction with deformable bodies is proposed. The fluid domain is modeled by using the lattice Boltzmann method, thus analyzing the fluid dynamics by a mesoscopic point of view. It has been proved that the solution provided by this method is equivalent to solve the Navier-Stokes equations for an incompressible flow with a second-order accuracy. Slender elastic structures idealized through beam finite elements are used. Large displacements are accounted for by using the corotational formulation. Structural dynamics is computed by using the Time Discontinuous Galerkin method. Therefore, two different solution procedures are used, one for the fluid domain and the other for the structural part, respectively. These two solvers need to communicate and to transfer each other several information, i.e. stresses, velocities, displacements. In order to guarantee a continuous, effective, and mutual exchange of information, a coupling strategy, consisting of three different algorithms, has been developed and numerically tested. In particular, the effectiveness of the three algorithms is shown in terms of interface energy artificially produced by the approximate fulfilling of compatibility and equilibrium conditions at the fluid-structure interface. The proposed coupled approach is used in order to solve different fluid-structure interaction problems, i.e. cantilever beams immersed in a viscous fluid, the impact of the hull of the ship on the marine free-surface, blood flow in a deformable vessels, and even flapping wings simulating the take-off of a butterfly. The good results achieved in each application highlight the effectiveness of the proposed methodology and of the C++ developed software to successfully approach several two-dimensional fluid-structure interaction problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fracture mechanics plays an important role in the material science, structure design and industrial production due to the failure of materials and structures are paid high attention in human activities. This dissertation, concentrates on some of the fractural aspects of shaft and composite which have being increasingly used in modern structures, consists four chapters within two parts. Chapters 1 to 4 are included in part 1. In the first chapter, the basic knowledge about the stress and displacement fields in the vicinity of a crack tip is introduced. A review involves the general methods of calculating stress intensity factors are presented. In Chapter 2, two simple engineering methods for a fast and close approximation of stress intensity factors of cracked or notched beams under tension, bending moment, shear force, as well as torque are presented. New formulae for calculating the stress intensity factors are proposed. One of the methods named Section Method is improved and applied to the three dimensional analysis of cracked circular section for calculating stress intensity factors. The comparisons between the present results and the solutions calculated by ABAQUS for single mode and mixed mode are studied. In chapter 3, fracture criteria for a crack subjected to mixed mode loading of two-dimension and three-dimension are reviewed. The crack extension angle for single mode and mixed mode, and the critical loading domain obtained by SEDF and MTS are compared. The effects of the crack depth and the applied force ratio on the crack propagation angle and the critical loading are investigated. Three different methods calculating the crack initiation angle for three-dimension analysis of various crack depth and crack position are compared. It should be noted that the stress intensity factors used in the criteria are calculated in section 2.1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il presente lavoro di tesi ha riguardato una riformulazione teorica, una modellazione numerica e una serie di applicazioni della Generalized Beam Theory per lo studio dei profili in parete sottile con particolare riguardo ai profili in acciaio formati a freddo. In particolare, in questo lavoro è proposta una riscrittura della cinematica GBT che introduce in una forma originale la deformabilità a taglio della sezione. Tale formulazione consente di conservare il formato della GBT classica e introducendo uno spostamento di warping variabile lungo lo spessore della generica parete della sezione trasversale, garantisce perfetta coerenza tra la componente flessionale e tagliante della trave. E' mostrato, come tale riscrittura consente in maniera agevole di ricondursi alle teorie classiche di trave, anche deformabili a taglio. Inoltre, in tale contesto, è stata messa a punto una procedura di ricostruzione dello sforzo tridimensionale in grado ricostruire la parte reattiva delle componenti di tensioni dovuta al vincolamento interno proprio di un modello a cinematica ridotta. Sulla base di tali strumenti, è stato quindi proposto un approccio progettuale dedicato ai profili in classe 4, definito ESA (Embedded Stability Analysis), in grado di svolgere le verifiche coerentemente con quanto prescritto dalle normative vigenti. Viene infine presentata una procedura numerica per la progettazione di sistemi di copertura formati a freddo. Tale procedura permette di effettuare in pochi semplici passi il progetto dell'arcareccio e dei dettagli costruttivi relativi alla copertura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work investigates the influence of chemical reactions on the release of elements from target-ion source units for ISOL facilities. Methods employed are thermochromatography, yield and hold-up time measurements; adsorption enthalpies have been determined for Ag and In. The results obtained with these methods are consistent. Elements exhibit reversible or irreversible reactions on different surfaces (Tantalum, quartz, sapphire). The interactions with surfaces inside the target-ion source unit can be used to improve the quality of radioactive ion beams. Spectroscopic data obtained at CERN-ISOLDE using a medium-temperature quartz transfer line show the effectivity of selective adsorption for beam purification. New gamma lines of 131Cd have been observed and a tentative decay scheme is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GFRP pultruded profiles have shown to be structural profiles with great stiffness, strenght and very low specific weight, making it a great candidate for the rehabilitation of damaged strucutres. To further enhance the strucutral mechanism of these type of beams, the Slimflor composite structural system has lead as basis for this analysis; by replacing the steel beam with a GFRP pultruded profile. To further increase its composite action, a continuous shear connector has been set as part of the beam cross section as well as its needed reinforcement and fire protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypernuclear physics is currently attracting renewed interest, due tornthe important role of hypernuclei spectroscopy rn(hyperon-hyperon and hyperon-nucleon interactions) rnas a unique toolrnto describe the baryon-baryon interactions in a unified way and to rnunderstand the origin of their short-range.rnrnHypernuclear research will be one of the main topics addressed by the {sc PANDA} experimentrnat the planned Facility for Antiproton and Ion Research {sc FAIR}.rnThanks to the use of stored $overline{p}$ beams, copiousrnproduction of double $Lambda$ hypernuclei is expected at thern{sc PANDA} experiment, which will enable high precision $gamma$rnspectroscopy of such nuclei for the first time.rnAt {sc PANDA} excited states of $Xi^-$ hypernuclei will be usedrnas a basis for the formation of double $Lambda$ hypernuclei.rnFor their detection, a devoted hypernuclear detector setup is planned. This setup consists ofrna primary nuclear target for the production of $Xi^{-}+overline{Xi}$ pairs, a secondary active targetrnfor the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform $gamma$ spectroscopy.rnrnIn the present work, the feasibility of performing high precision $gamma$rnspectroscopy of double $Lambda$ hypernuclei at the {sc PANDA} experiment has been studiedrnby means of a Monte Carlo simulation. For this issue, the designing and simulation of the devoted detector setup as well as of the mechanism to produce double $Lambda$ hypernuclei have been optimizedrntogether with the performance of the whole system. rnIn addition, the production yields of double hypernuclei in excitedrnparticle stable states have been evaluated within a statistical decay model.rnrnA strategy for the unique assignment of various newly observed $gamma$-transitions rnto specific double hypernuclei has been successfully implemented by combining the predicted energy spectra rnof each target with the measurement of two pion momenta from the subsequent weak decays of a double hypernucleus.rn% Indeed, based on these Monte Carlo simulation, the analysis of the statistical decay of $^{13}_{Lambda{}Lambda}$B has been performed. rn% As result, three $gamma$-transitions associated to the double hypernuclei $^{11}_{Lambda{}Lambda}$Bern% and to the single hyperfragments $^{4}_{Lambda}$H and $^{9}_{Lambda}$Be, have been well identified.rnrnFor the background handling a method based on time measurement has also been implemented.rnHowever, the percentage of tagged events related to the production of $Xi^{-}+overline{Xi}$ pairs, variesrnbetween 20% and 30% of the total number of produced events of this type. As a consequence, further considerations have to be made to increase the tagging efficiency by a factor of 2.rnrnThe contribution of the background reactions to the radiation damage on the germanium detectorsrnhas also been studied within the simulation. Additionally, a test to check the degradation of the energyrnresolution of the germanium detectors in the presence of a magnetic field has also been performed.rnNo significant degradation of the energy resolution or in the electronics was observed. A correlationrnbetween rise time and the pulse shape has been used to correct the measured energy. rnrnBased on the present results, one can say that the performance of $gamma$ spectroscopy of double $Lambda$ hypernuclei at the {sc PANDA} experiment seems feasible.rnA further improvement of the statistics is needed for the background rejection studies. Moreover, a more realistic layout of the hypernuclear detectors has been suggested using the results of these studies to accomplish a better balance between the physical and the technical requirements.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis work concerns X-ray spectrometry for both medical and space applications and is divided into two sections. The first section addresses an X-ray spectrometric system designed to study radiological beams and is devoted to the optimization of diagnostic procedures in medicine. A parametric semi-empirical model capable of efficiently reconstructing diagnostic X-ray spectra in 'middle power' computers was developed and tested. In addition, different silicon diode detectors were tested as real-time detectors in order to provide a real-time evaluation of the spectrum during diagnostic procedures. This project contributes to the field by presenting an improved simulation of a realistic X-ray beam emerging from a common X-ray tube with a complete and detailed spectrum that lends itself to further studies of added filtration, thus providing an optimized beam for different diagnostic applications in medicine. The second section describes the preliminary tests that have been carried out on the first version of an Application Specific Integrated Circuit (ASIC), integrated with large area position-sensitive Silicon Drift Detector (SDD) to be used on board future space missions. This technology has been developed for the ESA project: LOFT (Large Observatory for X-ray Timing), a new medium-class space mission that the European Space Agency has been assessing since February of 2011. The LOFT project was proposed as part of the Cosmic Vision Program (2015-2025).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the race to obtain protons with higher energies, using more compact systems at the same time, laser-driven plasma accelerators are becoming an interesting possibility. But for now, only beams with extremely broad energy spectra and high divergence have been produced. The driving line of this PhD thesis was the study and design of a compact system to extract a high quality beam out of the initial bunch of protons produced by the interaction of a laser pulse with a thin solid target, using experimentally reliable technologies in order to be able to test such a system as soon as possible. In this thesis, different transport lines are analyzed. The first is based on a high field pulsed solenoid, some collimators and, for perfect filtering and post-acceleration, a high field high frequency compact linear accelerator, originally designed to accelerate a 30 MeV beam extracted from a cyclotron. The second one is based on a quadruplet of permanent magnetic quadrupoles: thanks to its greater simplicity and reliability, it has great interest for experiments, but the effectiveness is lower than the one based on the solenoid; in fact, the final beam intensity drops by an order of magnitude. An additional sensible decrease in intensity is verified in the third case, where the energy selection is achieved using a chicane, because of its very low efficiency for off-axis protons. The proposed schemes have all been analyzed with 3D simulations and all the significant results are presented. Future experimental work based on the outcome of this thesis can be planned and is being discussed now.