939 resultados para Tree allometry
Resumo:
Current nutrient deposition shows episodic variations which likely may impact the local nutrient cycle at the RBSF. Comparing analyses of deposition data during present-day atmospheric circulation and phases of high biomass burning in the Amazon, characteristic relationships between remote emissions and local deposition are determined. By using projections drawn from the special report on emission scenarios (SRES) in combination with a trajectory modeling tool, future nutrient deposition conditions of the mountain ecosystem are assessed. Observations of relations between climatic variables, current time series of nutrient deposition, and tree growth point to an impact of the remote fertilization effect of atmospheric matters, emitted primarily by human activities like biomass burning and agricultural and industrial sources. The increasing emissions in the future may have adverse effects on the ecosystem in the long run.
Resumo:
Step by step instructions on how to build a Christmas tree out of library books. A Bookmas tree!
Resumo:
Literature on bird spider or tarantula bites (Theraphosidae) is rare. This is astonishing as they are coveted pets and interaction with their keepers (feeding, cleaning the terrarium or taking them out to hold) might increase the possibility for bites. Yet, this seems to be a rare event and might be why most theraphosids are considered to be harmless, even though the urticating hairs of many American species can cause disagreeable allergic reactions. We are describing a case of a verified bite by an Indian ornamental tree spider (Poecilotheria regalis), where the patient developed severe, long lasting muscle cramps several hours after the bite. We present a comprehensive review of the literature on bites of these beautiful spiders and conclude that a delayed onset of severe muscle cramps, lasting for days, is characteristic for Poecilotheria bites. We discuss Poecilotheria species as an exception from the general assumption that theraphosid bites are harmless to humans.
Resumo:
Rockfall is a widespread and hazardous process in mountain environments, but data on past events are only rarely available. Growth-ring series from trees impacted by rockfall were successfully used in the past to overcome the lack of archival records. Dendrogeomorphic techniques have been demonstrated to allow very accurate dating and reconstruction of spatial and temporal rockfall activity, but the approach has been cited to be labor intensive and time consuming. In this study, we present a simplified method to quantify rockfall processes on forested slopes requiring less time and efforts. The approach is based on a counting of visible scars on the stem surface of Common beech (Fagus sylvatica L.). Data are presented from a site in the Inn valley (Austria), where rocks are frequently detached from an ~ 200-m-high, south-facing limestone cliff. We compare results obtained from (i) the “classical” analysis of growth disturbances in the tree-ring series of 33 Norway spruces (Picea abies (L.) Karst.) and (ii) data obtained with a scar count on the stem surface of 50 F. sylvatica trees. A total of 277 rockfall events since A.D. 1819 could be reconstructed from tree-ring records of P. abies, whereas 1140 scars were observed on the stem surface of F. sylvatica. Absolute numbers of rockfalls (and hence return intervals) vary significantly between the approaches, and the mean number of rockfalls observed on the stem surface of F. sylvatica exceeds that of P. abies by a factor of 2.7. On the other hand, both methods yield comparable data on the spatial distribution of relative rockfall activity. Differences may be explained by a great portion of masked scars in P. abies and the conservation of signs of impacts on the stem of F. sylvatica. Besides, data indicate that several scars on the bark of F. sylvatica may stem from the same impact and thus lead to an overestimation of rockfall activity.
Resumo:
This progress report focuses on the contribution of tree-ring series to rockfall research and on recent development and challenges in the field. Dendrogeomorphic techniques have been used extensively since the early 2000s and several approaches have been developed to extract rockfall signals from tree-ring records of conifer trees. The reconstruction of rockfall chronologies has been hampered in the past by sample sizes that decrease as one goes back in time, as well as by a paucity of studies that include broadleaved tree species, which are in fact quite common in rockfall-prone environments. In this report, we propose a new approach considering impact probability and quantification of uncertainty in the reconstruction of rockfall time series as well as a quantitative estimate of presumably missed events. In addition, we outline new approaches and future perspectives for the inclusion of woody vegetation in hazard assessment procedures, and end with future thematic perspectives.
Resumo:
Environment and genetics combine to influence tree growth and should therefore be jointly considered when evaluating forest responses in a warming climate. Here, we combine dendroclimatology and population genetic approaches with the aim of attributing climatic influences on growth of European larch (Larix decidua) and Norway spruce (Picea abies). Increment cores and genomic DNA samples were collected from populations along a ~900-m elevational transect where the air temperature gradient encompasses a ~4 °C temperature difference. We found that low genetic differentiation among populations indicates gene flow is high, suggesting that migration rate is high enough to counteract the selective pressures of local environmental variation. We observed lower growth rates towards higher elevations and a transition from negative to positive correlations with growing season temperature upward along the elevational transect. With increasing elevation there was also a clear increase in the explained variance of growth due to summer temperatures. Comparisons between climate sensitivity patterns observed along this elevational transect with those from Larix and Picea sites distributed across the Alps reveal good agreement, and suggest that tree-ring width (TRW) variations are more climate-driven than genetics-driven at regional and larger scales. We conclude that elevational transects are an extremely valuable platform for understanding climatic-driven changes over time and can be especially powerful when working within an assessed genetic framework.
Resumo:
Studies of intraspecific morphological variation in fishes have traditionally focused on freshwater rather than marine species. In addition, such studies typically focus on adults, although causes and intensities of selective pressures most likely vary through an individual’s lifetime. In this study, body and head shape of a marine species, shiner perch Cymatogaster aggregata Gibbons were compared among localities along the Pacific Northwest coast of North America. Evidence was found for intraspecific variation in ontogenetic allometry, and for a closer correlation of body shape with environment rather than geographical proximity. This correlation with environment was more evident in younger fish, thereby demonstrating the importance of analysing multiple life stages. A common garden experiment suggests both environmental and genetic bases for the observed differences. Recognizing intraspecific ecomorphological complexity and its specificity to habitat and/or life stage can have important consequences for understanding the role of local adaptation and population dynamics in macroecology.
Resumo:
To improve our understanding of the Asian monsoon system, we developed a hydroclimate reconstruction in a marginal monsoon shoulder region for the period prior to the industrial era. Here, we present the first moisture sensitive tree-ring chronology, spanning 501 years for the Dieshan Mountain area, a boundary region of the Asian summer monsoon in the northeastern Tibetan Plateau. This reconstruction was derived from 101 cores of 68 old-growth Chinese pine (Pinus tabulaeformis) trees. We introduce a Hilbert–Huang Transform (HHT) based standardization method to develop the tree-ring chronology, which has the advantages of excluding non-climatic disturbances in individual tree-ring series. Based on the reliable portion of the chronology, we reconstructed the annual (prior July to current June) precipitation history since 1637 for the Dieshan Mountain area and were able to explain 41.3% of the variance. The extremely dry years in this reconstruction were also found in historical documents and are also associated with El Niño episodes. Dry periods were reconstructed for 1718–1725, 1766–1770 and 1920–1933, whereas 1782–1788 and 1979–1985 were wet periods. The spatial signatures of these events were supported by data from other marginal regions of the Asian summer monsoon. Over the past four centuries, out-of-phase relationships between hydroclimate variations in the Dieshan Mountain area and far western Mongolia were observed during the 1718–1725 and 1766–1770 dry periods and the 1979–1985 wet period.
Resumo:
Northwestern North America has one of the highest rates of recent temperature increase in the world, but the putative “divergence problem” in dendroclimatology potentially limits the ability of tree-ring proxy data at high latitudes to provide long-term context for current anthropogenic change. Here, summer temperatures are reconstructed from a Picea glauca maximum latewood density (MXD) chronology that shows a stable relationship to regional temperatures and spans most of the last millennium at the Firth River in northeastern Alaska. The warmest epoch in the last nine centuries is estimated to have occurred during the late twentieth century, with average temperatures over the last 30 yr of the reconstruction developed for this study [1973–2002 in the Common Era (CE)] approximately 1.3° ± 0.4°C warmer than the long-term preindustrial mean (1100–1850 CE), a change associated with rapid increases in greenhouse gases. Prior to the late twentieth century, multidecadal temperature fluctuations covary broadly with changes in natural radiative forcing. The findings presented here emphasize that tree-ring proxies can provide reliable indicators of temperature variability even in a rapidly warming climate.
Resumo:
•Symbioses between plant roots and mycorrhizal fungi are thought to enhance plant uptake of nutrients through a favourable exchange for photosynthates. Ectomycorrhizal fungi are considered to play this vital role for trees in nitrogen (N)-limited boreal forests. •We followed symbiotic carbon (C)–N exchange in a large-scale boreal pine forest experiment by tracing 13CO2 absorbed through tree photosynthesis and 15N injected into a soil layer in which ectomycorrhizal fungi dominate the microbial community. •We detected little 15N in tree canopies, but high levels in soil microbes and in mycorrhizal root tips, illustrating effective soil N immobilization, especially in late summer, when tree belowground C allocation was high. Additions of N fertilizer to the soil before labelling shifted the incorporation of 15N from soil microbes and root tips to tree foliage. •These results were tested in a model for C–N exchange between trees and mycorrhizal fungi, suggesting that ectomycorrhizal fungi transfer small fractions of absorbed N to trees under N-limited conditions, but larger fractions if more N is available. We suggest that greater allocation of C from trees to ectomycorrhizal fungi increases N retention in soil mycelium, driving boreal forests towards more severe N limitation at low N supply.
Resumo:
Fruiting is typically considered to massively burden the seasonal carbon budget of trees. The cost of reproduction has therefore been suggested as a proximate factor explaining observed mast-fruiting patterns. Here, we used a large-scale, continuous 13C labeling of mature, deciduous trees in a temperate Swiss forest to investigate to what extent fruit formation in three species with masting reproduction behavior (Carpinus betulus, Fagus sylvatica, Quercus petraea) relies on the import of stored carbon reserves. Using a free-air CO2 enrichment system, we exposed trees to 13C-depleted CO2 during 8 consecutive years. By the end of this experiment, carbon reserve pools had significantly lower δ13C values compared to control trees. δ13C analysis of new biomass during the first season after termination of the CO2 enrichment allowed us to distinguish the sources of built-in carbon (old carbon reserves vs. current assimilates). Flowers and expanding leaves carried a significant 13C label from old carbon stores. In contrast, fruits and vegetative infructescence tissues were exclusively produced from current, unlabeled photoassimilates in all three species, including F. sylvatica, which had a strong masting season. Analyses of δ13C in purified starch from xylem of fruit-bearing shoots revealed a complete turn-over of starch during the season, likely due to its usage for bud break. This study is the first to directly demonstrate that fruiting is independent from old carbon reserves in masting trees, with significant implications for mechanistic models that explain mast seeding.
Resumo:
Climate affects the timing, rate and dynamics of tree growth, over time scales ranging from seconds to centuries. Monitoring how a tree's stem radius varies over these time scales can provide insight into intra-annual stem dynamics and improve our understanding of climate impacts on tree physiology and growth processes. Here, we quantify the response of radial conifer stem size to environmental fluctuations via a novel assessment of tree circadian cycles. We analyze four years of sub-hourly data collected from 56 larch and spruce trees growing along a natural temperature gradient of ∼6 °C in the central Swiss Alps. During the growing season, tree stem diameters were greatest at mid-morning and smallest in the late evening, reflecting the daily cycle of water uptake and loss. Along the gradient, amplitudes calculated from the stem radius cycle were ∼50% smaller at the upper site (∼2200 m a.s.l.) relative to the lower site (∼800 m a.s.l.). We show changes in precipitation, temperature and cloud cover have a substantial effect on typical growing season diurnal cycles; amplitudes were nine times smaller on rainy days (>10 mm), and daily amplitudes are approximately 40% larger when the mean daily temperature is 15–20 °C than when it is 5–10 °C. We find that over the growing season in the sub-alpine forests, spruce show greater daily stem water movement than larch. However, under projected future warming, larch could experience up to 50% greater stem water use, which may severely affect future growth on already dry sites. Our data further indicate that because of the confounding influences of radial growth and short-term water dynamics on stem size, conventional methodology probably overstates the effect of water-linked meteorological variables (i.e. precipitation and relative humidity) on intra-annual tree growth. We suggest future studies use intra-seasonal measurements of cell development and consider whether climatic factors produce reversible changes in stem diameter. These study design elements may help researchers more accurately quantify and attribute changes in forest productivity in response to future warming.
Resumo:
This study compares aboveground and belowground carbon stocks and tree diversity in different cocoa cultivation systems in Bolivia: monoculture, simple agroforestry, and successional agroforestry, as well as fallow as a control. Since diversified, agroforestry-based cultivation systems are often considered important for sustainable development, we also evaluated the links between carbon stocks and tree diversity, as well as the role of organic certification in transitioning from monoculture to agroforestry. Biomass, tree diversity, and soil physiochemical parameters were sampled in 15 plots measuring 48 × 48 m. Semi-structured interviews with 52 cocoa farmers were used to evaluate the role of organic certification and farmers’ organizations (e.g., cocoa cooperatives) in promoting tree diversity. Total carbon stocks in simple agroforestry systems (128.4 ± 20 Mg ha−1) were similar to those on fallow plots (125.2 ± 10 Mg ha−1). Successional agroforestry systems had the highest carbon stocks (143.7 ± 5.3 Mg ha−1). Monocultures stored significantly less carbon than all other systems (86.3 ± 4.0 Mg ha−1, posterior probability P(Diff > 0) of 0.000–0.006). Among shade tree species, Schizolobium amazonicum, Centrolobium ochroxylum, and Anadenanthera sp. accumulated the most biomass. High-value timber species (S. amazonicum, C. ochroxylum, Amburana cearensis, and Swietenia macrophylla) accounted for 22.0 % of shade tree biomass. The Shannon index and tree species richness were highest in successional agroforestry systems. Cocoa plots on certified organic farms displayed significantly higher tree species richness than plots on non-certified farms. Thus, expanding the coverage of organic farmers’ organizations may be an effective strategy for fostering transitions from monoculture to agroforestry systems.