998 resultados para Transient complexes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long-standing challenge in transition metal catalysis is selective C–C bond coupling of simple feedstocks, such as carbon monoxide, ethylene or propylene, to yield value-added products. This work describes efforts toward selective C–C bond formation using early- and late-transition metals, which may have important implications for the production of fuels and plastics, as well as many other commodity chemicals.

The industrial Fischer-Tropsch (F-T) process converts synthesis gas (syngas, a mixture of CO + H2) into a complex mixture of hydrocarbons and oxygenates. Well-defined homogeneous catalysts for F-T may provide greater product selectivity for fuel-range liquid hydrocarbons compared to traditional heterogeneous catalysts. The first part of this work involved the preparation of late-transition metal complexes for use in syngas conversion. We investigated C–C bond forming reactions via carbene coupling using bis(carbene)platinum(II) compounds, which are models for putative metal–carbene intermediates in F-T chemistry. It was found that C–C bond formation could be induced by either (1) chemical reduction of or (2) exogenous phosphine coordination to the platinum(II) starting complexes. These two mild methods afforded different products, constitutional isomers, suggesting that at least two different mechanisms are possible for C–C bond formation from carbene intermediates. These results are encouraging for the development of a multicomponent homogeneous catalysis system for the generation of higher hydrocarbons.

A second avenue of research focused on the design and synthesis of post-metallocene catalysts for olefin polymerization. The polymerization chemistry of a new class of group 4 complexes supported by asymmetric anilide(pyridine)phenolate (NNO) pincer ligands was explored. Unlike typical early transition metal polymerization catalysts, NNO-ligated catalysts produce nearly regiorandom polypropylene, with as many as 30-40 mol % of insertions being 2,1-inserted (versus 1,2-inserted), compared to <1 mol % in most metallocene systems. A survey of model Ti polymerization catalysts suggests that catalyst modification pathways that could affect regioselectivity, such as C–H activation of the anilide ring, cleavage of the amine R-group, or monomer insertion into metal–ligand bonds are unlikely. A parallel investigation of a Ti–amido(pyridine)phenolate polymerization catalyst, which features a five- rather than a six-membered Ti–N chelate ring, but maintained a dianionic NNO motif, revealed that simply maintaining this motif was not enough to produce regioirregular polypropylene; in fact, these experiments seem to indicate that only an intact anilide(pyridine)phenolate ligated-complex will lead to regioirregular polypropylene. As yet, the underlying causes for the unique regioselectivity of anilide(pyridine)phenolate polymerization catalysts remains unknown. Further exploration of NNO-ligated polymerization catalysts could lead to the controlled synthesis of new types of polymer architectures.

Finally, we investigated the reactivity of a known Ti–phenoxy(imine) (Ti-FI) catalyst that has been shown to be very active for ethylene homotrimerization in an effort to upgrade simple feedstocks to liquid hydrocarbon fuels through co-oligomerization of heavy and light olefins. We demonstrated that the Ti-FI catalyst can homo-oligomerize 1-hexene to C12 and C18 alkenes through olefin dimerization and trimerization, respectively. Future work will include kinetic studies to determine monomer selectivity by investigating the relative rates of insertion of light olefins (e.g., ethylene) vs. higher α-olefins, as well as a more detailed mechanistic study of olefin trimerization. Our ultimate goal is to exploit this catalyst in a multi-catalyst system for conversion of simple alkenes into hydrocarbon fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an ultrafast transient, ring-shaped population grating induced by an ultrashort hollow Gaussian laser bullet by solving the three-dimensional full-wave Maxwell-Bloch equations. Through adjusting the beam waist and the area of the pulse, we can control the number of lines and the period of the grating. Based on this coherent control scheme, a door to produce gratings with complex transverse structure is opened.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fast electron propagation in an inverse cone target is investigated computationally and experimentally. Two-dimensional particle-in-cell simulation shows that fast electrons with substantial numbers are generated at the outer tip of an inverse cone target irradiated by a short intense laser pulse. These electrons are guided and confined to propagate along the inverse cone wall, forming a large surface current. The propagation induces strong transient electric and magnetic fields which guide and confine the surface electron current. The experiment qualitatively verifies the guiding and confinement of the strong electron current in the wall surface. The large surface current and induced strong fields are of importance for fast ignition related researches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chapter I

Theories for organic donor-acceptor (DA) complexes in solution and in the solid state are reviewed, and compared with the available experimental data. As shown by McConnell et al. (Proc. Natl. Acad. Sci. U.S., 53, 46-50 (1965)), the DA crystals fall into two classes, the holoionic class with a fully or almost fully ionic ground state, and the nonionic class with little or no ionic character. If the total lattice binding energy 2ε1 (per DA pair) gained in ionizing a DA lattice exceeds the cost 2εo of ionizing each DA pair, ε1 + εo less than 0, then the lattice is holoionic. The charge-transfer (CT) band in crystals and in solution can be explained, following Mulliken, by a second-order mixing of states, or by any theory that makes the CT transition strongly allowed, and yet due to a small change in the ground state of the non-interacting components D and A (or D+ and A-). The magnetic properties of the DA crystals are discussed.

Chapter II

A computer program, EWALD, was written to calculate by the Ewald fast-convergence method the crystal Coulomb binding energy EC due to classical monopole-monopole interactions for crystals of any symmetry. The precision of EC values obtained is high: the uncertainties, estimated by the effect on EC of changing the Ewald convergence parameter η, ranged from ± 0.00002 eV to ± 0.01 eV in the worst case. The charge distribution for organic ions was idealized as fractional point charges localized at the crystallographic atomic positions: these charges were chosen from available theoretical and experimental estimates. The uncertainty in EC due to different charge distribution models is typically ± 0.1 eV (± 3%): thus, even the simple Hückel model can give decent results.

EC for Wurster's Blue Perchl orate is -4.1 eV/molecule: the crystal is stable under the binding provided by direct Coulomb interactions. EC for N-Methylphenazinium Tetracyanoquino- dimethanide is 0.1 eV: exchange Coulomb interactions, which cannot be estimated classically, must provide the necessary binding.

EWALD was also used to test the McConnell classification of DA crystals. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine: 7,7,8,8-Tetracyanoquinodimethan) EC = -4.0 eV while 2εo = 4.65 eV: clearly, exchange forces must provide the balance. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine:para-Chloranil) EC = -4.4 eV, while 2εo = 5.0 eV: again EC falls short of 2ε1. As a Gedankenexperiment, two nonionic crystals were assumed to be ionized: for (1:1)-(Hexamethyl- benzene:para-Chloranil) EC = -4.5 eV, 2εo = 6.6 eV; for (1:1)- (Napthalene:Tetracyanoethylene) EC = -4.3 eV, 2εo = 6.5 eV. Thus, exchange energies in these nonionic crystals must not exceed 1 eV.

Chapter III

A rapid-convergence quantum-mechanical formalism is derived to calculate the electronic energy of an arbitrary molecular (or molecular-ion) crystal: this provides estimates of crystal binding energies which include the exchange Coulomb inter- actions. Previously obtained LCAO-MO wavefunctions for the isolated molecule(s) ("unit cell spin-orbitals") provide the starting-point. Bloch's theorem is used to construct "crystal spin-orbitals". Overlap between the unit cell orbitals localized in different unit cells is neglected, or is eliminated by Löwdin orthogonalization. Then simple formulas for the total kinetic energy Q^(XT)_λ, nuclear attraction [λ/λ]XT, direct Coulomb [λλ/λ'λ']XT and exchange Coulomb [λλ'/λ'λ]XT integrals are obtained, and direct-space brute-force expansions in atomic wavefunctions are given. Fourier series are obtained for [λ/λ]XT, [λλ/λ'λ']XT, and [λλ/λ'λ]XT with the help of the convolution theorem; the Fourier coefficients require the evaluation of Silverstone's two-center Fourier transform integrals. If the short-range interactions are calculated by brute-force integrations in direct space, and the long-range effects are summed in Fourier space, then rapid convergence is possible for [λ/λ]XT, [λλ/λ'λ']XT and [λλ'/λ'λ]XT. This is achieved, as in the Ewald method, by modifying each atomic wavefunction by a "Gaussian convergence acceleration factor", and evaluating separately in direct and in Fourier space appropriate portions of [λ/λ]XT, etc., where some of the portions contain the Gaussian factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas stoichiometric activation of C-H bonds by complexes of transition metals is becoming increasingly common, selective functionalization of alkanes remains a formidable challenge in organometallic chemistry. The recent advances in catalytic alkane functionalization by transition-metal complexes are summarized in Chapter I.

The studies of the displacement of pentafluoropyridine in [(tmeda)Pt(CH_3)(NC_5F_5)][BAr^f_4] (1) with γ- tetrafluoropicoline, a very poor nucleophile, are reported in Chapter II. The ligand substitution occurs by a dissociative interchange mechanism. This result implies that dissociative loss of pentafluoropyridine is the rate-limiting step in the C-H activation reactions of 1.

Oxidation of dimethylplatinum(II) complexes (N-N)Pt(CH_3)_2 (N-N = tmeda(1), α-diimines) by dioxygen is described in Chapter III. Mechanistic studies suggest a two-step mechanism. First, a hydroperoxoplatinum(IV) complex is formed in a reaction between (N-N)Pt(CH_3)_2 and dioxygen. Next, the hydroperoxy complex reacts with a second equivalent of (N-N)Pt(CH_3)_2 to afford the final product, (N-N)Pt(OH)(OCH_3)(CH_3)_2. The hydroperoxy intermediate, (tmeda)Pt(OOH)(OCH_3)(CH_3)_2 (2), was isolated and characterized. The reactivity of 2 with several dime thylplatinum(II) complexes is reported.

The studies described in Chapter IV are directed toward the development of a platinum(II)-catalyzed oxidative alkane dehydrogenation. Stoichiometric conversion of alkanes (cyclohexane, ethane) to olefins (cyclohexene, ethylene) is achieved by C-H activation with [(N-N)Pt(CH_3)(CF_3CH_2OH)]BF_4 (1, N-N is N,N'-bis(3,5-di-t- butylphenyl)-1,4-diazabutadiene) which results in the formation of olefin hydride complexes. The first step in the C-H activation reaction is formation of a platinum(II) alkyl which undergoes β-hydrogen elimination to afford the olefin hydride complex. The cationic ethylplatinum(II) intermediate can be generated in situ by treating diethylplatinum(II) compounds with acids. Treatment of (phen)PtEt_2 with [H(OEt_2)_2]Bar^f_4 at low temperatures resulted in the formation of a mixture of [(phen)PtEt(OEt_2)]Bar^f_4 (8) and [(phen)Pt(C_2H_4)H] Bar^f_4 (7). The cationic olefin complexes are unreactive toward dioxygen or hydrogen peroxide. Since the success of the overall catalytic cycle depends on our ability to oxidize the olefin hydride complexes, a series of neutral olefin complexes of platinum(II) with monoanionic ligands (derivatives of pyrrole-2-carboxyaldehyde N-aryl imines) was prepared. Unfortunately, these are also stable to oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ultrafast transient population grating induced by a (1+1)-dimensional, ultrashort dipole soliton is demonstrated by solving the full-wave Maxwell-Bloch equations. The number of lines and the period of the grating can be controlled by the beam waist and the area of the pulse. Of interest is that a polarization grating is produced. A coherent control scheme based on these phenomena can be contemplated as ultrafast transient grating techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding and catalyzing chemical reactions requiring multiple electron transfers is an endeavor relevant to many outstanding challenges in the field of chemistry. To study multi-electron reactions, a terphenyl diphosphine framework was designed to support one or more metals in multiple redox states via stabilizing interactions with the central arene of the terphenyl backbone. A variety of unusual compounds and reactions and their relevance toward prominent research efforts in chemistry are the subject of this dissertation.

Chapter 2 introduces the para-terphenyl diphosphine framework and its coordination chemistry with group 10 transition metal centers. Both mononuclear and dinuclear compounds are characterized. In many cases, the metal center(s) are stabilized by the terphenyl central arene. These metal–arene interactions are characterized both statically, in the solid state, and fluxionally, in solution. As a proof-of-principle, a dinickel framework is shown to span multiple redox states, showing that multielectron chemistry can be supported by the coordinatively flexible terphenyl diphosphine.

Chapter 3 presents reactivity of the terphenyl diphosphine when bound to a metal center. Because of the dearomatizing effect of the metal center, the central arene of the ligand is susceptible to reactions that do not normally affect arenes. In particular, Ni-to-arene H-transfer and arene dihydrogenation reactions are presented. Additionally, evidence for reversibility of the Ni-to-arene H-transfer is discussed.

Chapter 4 expands beyond the chelated metal-arene interactions of the previous chapters. A dipalladium(I) terphenyl diphosphine framework is used to bind a variety of exogenous organic ligands including arenes, dienes, heteroarenes, thioethers, and anionic ligands. The compounds are structurally characterized, and many ligands exhibit unprecedented bindng modes across two metal centers. The relative binding affinities are evaluated spectroscopically, and equilibrium binding constants for the examined ligands are determined to span over 13 orders of magnitude. As an application of this framework, mild hydrogenation conditions of bound thiophene are presented.

Chapter 5 studies nickel-mediated C–O bond cleavage of aryl alkyl ethers, a transformation with emerging applications in fields such as lignin biofuels and organic methodology. Other group members have shown the mechanism of C–O bond cleavage of an aryl methyl ether incorporated into a meta-terphenyl diphosphine framework to proceed through β-H elimination of an alkoxide. First, the electronic selectivity of the model system is examined computationally and compared with catalytic systems. The lessons learned from the model system are then applied to isotopic labeling studies for catalytic aryl alkyl ether cleavage under dihydrogen. Results from selective deuteration experiments and mass spectrometry draw a clear analogy between the mechanisms of the model and catalytic systems that does not require dihydrogen for C–O bond cleavage, although dihydrogen is proposed to play a role in catalyst activation and catalytic turnover.

Appendix A presents initial efforts toward heterodinuclear complexes as models for CO dehydrogenase and Fischer Tropsch chemistry. A catechol-incorporating terphenyl diphosphine is reported, and metal complexes thereof are discussed.

Appendix B highlights some structurally characterized terphenyl diphosphine complexes that either do not thematically belong in the research chapters or proved to be difficult to reproduce. These compounds show unusual coordination modes of the terphenyl diphosphine from which other researchers may glean insights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to develop better catalysts for the cleavage of aryl-X bonds fundamental studies of the mechanism and individual steps of the mechanism have been investigated in detail. As the described studies are difficult at best in catalytic systems, model systems are frequently used. To study aryl-oxygen bond activation, a terphenyl diphosphine scaffold containing an ether moiety in the central arene was designed. The first three chapters of this dissertation focus on the studies of the nickel complexes supported by this diphosphine backbone and the research efforts in regards to aryl-oxygen bond activation.

Chapter 2 outlines the synthesis of a variety of diphosphine terphenyl ether ligand scaffolds. The metallation of these scaffolds with nickel is described. The reactivity of these nickel(0) systems is also outlined. The systems were found to typically undergo a reductive cleavage of the aryl oxygen bond. The mechanism was found to be a subsequent oxidative addition, β-H elimination, reductive elimination and (or) decarbonylation.

Chapter 3 presents kinetic studies of the aryl oxygen bond in the systems outlined in Chapter 2. Using a series of nickel(0) diphosphine terphenyl ether complexes the kinetics of aryl oxygen bond activation was studied. The activation parameters of oxidative addition for the model systems were determined. Little variation was observed in the rate and activation parameters of oxidative addition with varying electronics in the model system. The cause of the lack of variation is due to the ground state and oxidative addition transition state being affected similarly. Attempts were made to extend this study to catalytic systems.

Chapter 4 investigates aryl oxygen bond activation in the presence of additives. It was found that the addition of certain metal alkyls to the nickel(0) model system lead to an increase in the rate of aryl oxygen bond activation. The addition of excess Grignard reagent led to an order of magnitude increase in the rate of aryl oxygen bond activation. Similarly the addition of AlMe3 led to a three order of magnitude rate increase. Addition of AlMe3 at -80 °C led to the formation of an intermediate which was identified by NOESY correlations as a system in which the AlMe3 is coordinated to the ether moiety of the backbone. The rates and activation parameters of aryl oxygen bond activation in the presence of AlMe3 were investigated.

The last two chapters involve the study of metalla-macrocycles as ligands. Chapter 5 details the synthesis of a variety of glyoxime backbones and diphenol precursors and their metallation with aluminum. The coordination chemistry of iron on the aluminum scaffolds was investigated. Varying the electronics of the aluminum macrocycle was found to affect the observed electrochemistry of the iron center.

Chapter 6 extends the studies of chapter 5 to cobalt complexes. The synthesis of cobalt dialuminum glyoxime metal complexes is described. The electrochemistry of the cobalt complexes was investigated. The electrochemistry was compared to the observed electrochemistry of a zinc analog to identify the redox activity of the ligand. In the presence of acid the cobalt complexes were found to electrochemically reduce protons to dihydrogen. The electronics of the ancillary aluminum ligands were found to affect the potential of proton reduction in the cobalt complexes. These potentials were compared to other diglyoximate complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is mainly divided into two sub-parts: organometallic and bioinorganic/materials projects. The approach for the projects involves the use of two different multinucleating ligands to synthesize mono- and multinuclear complexes. Chapter 2 describes the synthesis of a multinucleating tris(phosphinoaryl)benzene ligand used to support mono-nickel and palladium complexes. The isolated mononuclear complexes were observed to undergo intramolecular arene C¬–H to C–P functionalization. The transformation was studied by nuclear magnetic resonance spectroscopy and X-ray crystallography, and represents a rare type of C–H functionalization mechanism, facilitated by the interactions of the group 10 metal with the arene π–system.

Chapter 3 describes the construction of multinickel complexes supported by the same triphosphine ligand from Chapter 2. This chapter shows how the central arene in the ligand’s triarylbenzene framework can interact with dinickel and trinickel moieties in various binding modes. X-ray diffraction studies indicated that all compounds display strong metal–arene interactions. A cofacial triangulo nickel(0) complex supported by this ligand scaffold was also isolated and characterized. This chapter demonstrates the use of an arene as versatile ligand design element for small molecular clusters.

Chapter 4 presents the syntheses of a series of discrete mixed transition metal Mn oxido clusters and their characterization. The synthesis of these oxide clusters displaying two types of transition metals were targeted for systematic metal composition-property studies relevant to mixed transition metal oxides employed in electrocatalysis. A series of heterometallic trimanganese tetraoxido cubanes capped with a redox-active metal [MMn3O4] (M = Fe, Co, Ni, Cu) was synthesized starting from a [CaMn3O4] precursor and structurally characterized by X-ray crystallography and anomalous diffraction to conclusively determine that M is incorporated at a single position in the cluster. The electrochemical properties of these complexes were studied via cyclic voltammetry. The redox chemistry of the series of complexes was investigated by the addition of a reductant and oxidant. X-ray absorption and electron paramagnetic resonance spectroscopies were also employed to evaluate the product of the oxidation/reduction reaction to determine the site of electron transfer given the presence of two types of redox-active metals. Additional studies on oxygen atom transfer reactivities of [MMn3O4] and [MMn3O2] series were performed to investigate the effect of the heterometal M in the reaction rates.

Chapter 5 focuses on the use of [CoMn3O4] and [NiMn3O4] cubane complexes discussed in Chapter 4 as precursors to heterogeneous oxygen evolution reaction (OER) electrocatalysts. These well-defined complexes were dropcasted on electrodes with/without heat treatment, and the OER activities of the resulting films were evaluated. Multiple spectroscopic techniques were performed on the surface of the electrocatalysts to gain insight into the structure-function relationships based on the heterometallic composition. Depending on film preparation, the Co-Mn-oxide was found to change metal composition during catalysis, while the Ni-Mn oxide maintained the NiMn3 ratio. These studies represent the use of discrete heterometallic-oxide clusters as precursors for heterogeneous water oxidation catalysts.

Appendix A describes the ongoing effort to synthesize a series of heteromultimetallic [MMn3X] clusters (X = O, S, F). Complexes such as [ZnMn3O], [CoMn3O], [Mn3S], and [Mn4F] have been synthesized and structurally characterized. An amino-bis-oxime ligand (PRABO) has been installed on the [ZnMn3O] cluster. Upon the addition of O2, the desymmetrized [ZnMn3O] cluster only underwent an outer-sphere, one-electron oxidation. Efforts to build and manipulate other heterometallic [MMn3X] clusters are still ongoing, targeting O2 binding and reduction. Appendix B summarizes the multiple synthetic approaches to build a [Co4O4]-cubane complex relevant to heterogeneous OER electrocatalysis. Starting with the tricobalt cluster [LCo3(O2CR)3] and treatment various strong oxidants that can serve as oxygen atom source in the presence Co2+ salt only yielded tricobalt mono–oxo complexes. Appendix C presents the efforts to model the H-cluster framework of [FeFe]-hydrogenase by incorporating a synthetic diiron complex onto a protein-supported or a synthetic ligand-supported [Fe4S4]-cluster. The mutant ferredoxin with a [Fe4S4]-cluster and triscarbene ligand have been characterized by multiple spectroscopic techniques. The reconstruction of an H-cluster mimic has not yet been achieved, due to the difficulty of obtaining crystallographic evidence and the ambiguity of the EPR results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Advanced LIGO and Virgo experiments are poised to detect gravitational waves (GWs) directly for the first time this decade. The ultimate prize will be joint observation of a compact binary merger in both gravitational and electromagnetic channels. However, GW sky locations that are uncertain by hundreds of square degrees will pose a challenge. I describe a real-time detection pipeline and a rapid Bayesian parameter estimation code that will make it possible to search promptly for optical counterparts in Advanced LIGO. Having analyzed a comprehensive population of simulated GW sources, we describe the sky localization accuracy that the GW detector network will achieve as each detector comes online and progresses toward design sensitivity. Next, in preparation for the optical search with the intermediate Palomar Transient Factory (iPTF), we have developed a unique capability to detect optical afterglows of gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Burst Monitor (GBM). Its comparable error regions offer a close parallel to the Advanced LIGO problem, but Fermi's unique access to MeV-GeV photons and its near all-sky coverage may allow us to look at optical afterglows in a relatively unexplored part of the GRB parameter space. We present the discovery and broadband follow-up observations (X-ray, UV, optical, millimeter, and radio) of eight GBM-IPTF afterglows. Two of the bursts (GRB 130702A / iPTF13bxl and GRB 140606B / iPTF14bfu) are at low redshift (z=0.145 and z = 0.384, respectively), are sub-luminous with respect to "standard" cosmological bursts, and have spectroscopically confirmed broad-line type Ic supernovae. These two bursts are possibly consistent with mildly relativistic shocks breaking out from the progenitor envelopes rather than the standard mechanism of internal shocks within an ultra-relativistic jet. On a technical level, the GBM--IPTF effort is a prototype for locating and observing optical counterparts of GW events in Advanced LIGO with the Zwicky Transient Facility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observational studies of our solar system's small-body populations (asteroids and comets) offer insight into the history of our planetary system, as these minor planets represent the left-over building blocks from its formation. The Palomar Transient Factory (PTF) survey began in 2009 as the latest wide-field sky-survey program to be conducted on the 1.2-meter Samuel Oschin telescope at Palomar Observatory. Though its main science program has been the discovery of high-energy extragalactic sources (such as supernovae), during its first five years PTF has collected nearly five million observations of over half a million unique solar system small bodies. This thesis begins to analyze this vast data set to address key population-level science topics, including: the detection rates of rare main-belt comets and small near-Earth asteroids, the spin and shape properties of asteroids as inferred from their lightcurves, the applicability of this visible light data to the interpretation of ultraviolet asteroid observations, and a comparison of the physical properties of main-belt and Jovian Trojan asteroids. Future sky-surveys would benefit from application of the analytical techniques presented herein, which include novel modeling methods and unique applications of machine-learning classification. The PTF asteroid small-body data produced in the course of this thesis work should remain a fertile source of solar system science and discovery for years to come.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I.

Various studies designed to elucidate the electronic structure of the arsenic donor ligand, o-phenylenebisdimethylarsine (diarsine), have been carried out. The electronic spectrum of diarsine has been measured at 300 and 77˚K. Electronic spectra of the molecular complexes of various substituted organoarsines and phosphines with tetracyanoethylene have been measured and used to estimate the relative ionization potentials of these molecules.

Uv photolysis of arsines in frozen solution (96˚K) has yielded thermally labile, paramagnetic products. These include the molecular cations of the photolyzed compounds. The species (diars)+ exhibits hyper-fine splitting due to two equivalent 75As(I=3/2) nuclei. Resonances due to secondary products are reported and assignments discussed.

Evidence is presented for the involvement of d-orbitals in the bonding of arsines. In (diars)+ there is mixing of arsenic “lone-pair” orbitals with benzene ring π-orbitals.

II.

Detailed electronic spectral measurements at 300 and 77˚K have been carried out on five-coordinate complexes of low-spin nickel(II), including complexes of both trigonal bipyramidal (TBP) and square pyramidal (SPY) geometry. TBP complexes are of the form NiLX+ (X=halide or cyanide,

L = Qƭ(CH2)3As(CH3)2]3 or

P [hexagon - Q'CH3] , Q = P, As,

Q’=S, Se).

The electronic spectra of these compounds exhibit a novel feature at low temperature. The first ligand field band, which is asymmetric in the room temperature solution spectrum, is considerably more symmetrical at 77˚K. This effect is interpreted in terms of changes in the structure of the complex.

The SPY complexes are of the form Ni(diars)2Xz (X=CL, Br, CNS, CN, thiourea, NO2, As). On the basis of the spectral results, the d-level ordering is concluded to be xy ˂ xz, yz ˂ z2 ˂˂ x2 - y2. Central to this interpretation is identification of the symmetry-allowed 1A11E (xz, yz → x2 - y2) transition. This assignment was facilitated by the low temperature measurements.

An assignment of the charge-transfer spectra of the five-coordinate complexes is reported, and electronic spectral criteria for distinguishing the two limiting geometries are discussed.