910 resultados para Transgenetic algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses two pitch detection algorithms (PDA) for simple audio signals which are based on zero-cross rate (ZCR) and autocorrelation function (ACF). As it is well known, pitch detection methods based on ZCR and ACF are widely used in signal processing. This work shows some features and problems in using these methods, as well as some improvements developed to increase their performance. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the use of different population structures in a Genetic Algorithm (GA) applied to lot sizing and scheduling problems. The population approaches are divided into two types: single-population and multi-population. The first type has a non-structured single population. The multi-population type presents non-structured and structured populations organized in binary and ternary trees. Each population approach is tested on lot sizing and scheduling problems found in soft drink companies. These problems have two interdependent levels with decisions concerning raw material storage and soft drink bottling. The challenge is to simultaneously determine the lot sizing and scheduling of raw materials in tanks and products in lines. Computational results are reported allowing determining the better population structure for the set of problem instances evaluated. Copyright 2008 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the generation of optimal trajectories by genetic algorithms (GA) for a planar robotic manipulator. The implemented GA considers a multi-objective function that minimizes the end-effector positioning error together with the joints angular displacement and it solves the inverse kinematics problem for the trajectory. Computer simulations results are presented to illustrate this implementation and show the efficiency of the used methodology producing soft trajectories with low computing cost. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multi-relational Data Mining approach has emerged as alternative to the analysis of structured data, such as relational databases. Unlike traditional algorithms, the multi-relational proposals allow mining directly multiple tables, avoiding the costly join operations. In this paper, is presented a comparative study involving the traditional Patricia Mine algorithm and its corresponding multi-relational proposed, MR-Radix in order to evaluate the performance of two approaches for mining association rules are used for relational databases. This study presents two original contributions: the proposition of an algorithm multi-relational MR-Radix, which is efficient for use in relational databases, both in terms of execution time and in relation to memory usage and the presentation of the empirical approach multirelational advantage in performance over several tables, which avoids the costly join operations from multiple tables. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents vectorized methods of construction and descent of quadtrees that can be easily adapted to message passing parallel computing. A time complexity analysis for the present approach is also discussed. The proposed method of tree construction requires a hash table to index nodes of a linear quadtree in the breadth-first order. The hash is performed in two steps: an internal hash to index child nodes and an external hash to index nodes in the same level (depth). The quadtree descent is performed by considering each level as a vector segment of a linear quadtree, so that nodes of the same level can be processed concurrently. © 2012 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correct classification of sugar according to its physico-chemical characteristics directly influences the value of the product and its acceptance by the market. This study shows that using an electronic tongue system along with established techniques of supervised learning leads to the correct classification of sugar samples according to their qualities. In this paper, we offer two new real, public and non-encoded sugar datasets whose attributes were automatically collected using an electronic tongue, with and without pH controlling. Moreover, we compare the performance achieved by several established machine learning methods. Our experiments were diligently designed to ensure statistically sound results and they indicate that k-nearest neighbors method outperforms other evaluated classifiers and, hence, it can be used as a good baseline for further comparison. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obtaining a semi-automatic quantification of pathologies found in the lung, through images of high resolution computed tomography (HRCT), is of great importance to aid in medical diagnosis. Paraccocidioidomycosis (PCM) is a systemic disease that affects the lung and even after effective treatment leaves sequels such as pulmonary fibrosis and emphysema. It is very important to the area of tropical diseases that the lung injury be quantified more accurately. In this stud, we propose the development of algorithms in computational environment Matlab® able to objectively quantify lung diseases such as fibrosis and emphysema. The program consists in selecting the region of interest (ROI), and through the use of density masks and filters, obtaining the lesion area quantification in relation to the healthy area of the lung. The proposed method was tested on 15 exams of HRCT of patients with confirmed PCM. To prove the validity and effectiveness of the method, we used a virtual phantom, also developed in this research. © 2013 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) can be used to monitor hazardous and inaccessible areas. In these situations, the power supply (e.g. battery) of each node cannot be easily replaced. One solution to deal with the limited capacity of current power supplies is to deploy a large number of sensor nodes, since the lifetime and dependability of the network will increase through cooperation among nodes. Applications on WSN may also have other concerns, such as meeting temporal deadlines on message transmissions and maximizing the quality of information. Data fusion is a well-known technique that can be useful for the enhancement of data quality and for the maximization of WSN lifetime. In this paper, we propose an approach that allows the implementation of parallel data fusion techniques in IEEE 802.15.4 networks. One of the main advantages of the proposed approach is that it enables a trade-off between different user-defined metrics through the use of a genetic machine learning algorithm. Simulations and field experiments performed in different communication scenarios highlight significant improvements when compared with, for instance, the Gur Game approach or the implementation of conventional periodic communication techniques over IEEE 802.15.4 networks. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artigo apresenta uma aplicação do método para determinação espectrofotométrica simultânea dos íons divalentes de cobre, manganês e zinco à análise de medicamento polivitamínico/polimineral. O método usa 4-(2-piridilazo) resorcinol (PAR), calibração multivariada e técnicas de seleção de variáveis e foi otimizado o empregando-se o algoritmo das projeções sucessivas (APS) e o algoritmo genético (AG), para escolha dos comprimentos de onda mais informativos para a análise. Com essas técnicas, foi possível construir modelos de calibração por regressão linear múltipla (RLM-APS e RLM-AG). Os resultados obtidos foram comparados com modelos de regressão em componentes principais (PCR) e nos mínimos quadrados parciais (PLS). Demonstra-se a partir do erro médio quadrático de previsão (RMSEP) que os modelos apresentam desempenhos semelhantes ao prever as concentrações dos três analitos no medicamento. Todavia os modelos RLM são mais simples pois requerem um número muito menor de comprimentos de onda e são mais fáceis de interpretar que os baseados em variáveis latentes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed an algorithm using a Design of Experiments technique for reduction of search-space in global optimization problems. Our approach is called Domain Optimization Algorithm. This approach can efficiently eliminate search-space regions with low probability of containing a global optimum. The Domain Optimization Algorithm approach is based on eliminating non-promising search-space regions, which are identifyed using simple models (linear) fitted to the data. Then, we run a global optimization algorithm starting its population inside the promising region. The proposed approach with this heuristic criterion of population initialization has shown relevant results for tests using hard benchmark functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro production has been employed in bovine embryos and quantification of lipids is fundamental to understand the metabolism of these embryos. This paper presents a unsupervised segmentation method for histological images of bovine embryos. In this method, the anisotropic filter was used in the differents RGB components. After pre-processing step, the thresholding technique based on maximum entropy was applied to separate lipid droplets in the histological slides in different stages: early cleavage, morula and blastocyst. In the postprocessing step, false positives are removed using the connected components technique that identify regions with excess of dye near pellucid zone. The proposed segmentation method was applied in 30 histological images of bovine embryos. Experiments were performed with the images and statistical measures of sensitivity, specificity and accuracy were calculated based on reference images (gold standard). The value of accuracy of the proposed method was 96% with standard deviation of 3%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sao Paulo State Research Foundation-FAPESP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we deal with the problem of boosting the Optimum-Path Forest (OPF) clustering approach using evolutionary-based optimization techniques. As the OPF classifier performs an exhaustive search to find out the size of sample's neighborhood that allows it to reach the minimum graph cut as a quality measure, we compared several optimization techniques that can obtain close graph cut values to the ones obtained by brute force. Experiments in two public datasets in the context of unsupervised network intrusion detection have showed the evolutionary optimization techniques can find suitable values for the neighborhood faster than the exhaustive search. Additionally, we have showed that it is not necessary to employ many agents for such task, since the neighborhood size is defined by discrete values, with constrain the set of possible solution to a few ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase in new electronic devices had generated a considerable increase in obtaining spatial data information; hence these data are becoming more and more widely used. As well as for conventional data, spatial data need to be analyzed so interesting information can be retrieved from them. Therefore, data clustering techniques can be used to extract clusters of a set of spatial data. However, current approaches do not consider the implicit semantics that exist between a region and an object’s attributes. This paper presents an approach that enhances spatial data mining process, so they can use the semantic that exists within a region. A framework was developed, OntoSDM, which enables spatial data mining algorithms to communicate with ontologies in order to enhance the algorithm’s result. The experiments demonstrated a semantically improved result, generating more interesting clusters, therefore reducing manual analysis work of an expert.