965 resultados para Toll-Like Receptor 9
Resumo:
BACKGROUND Insulinomas are rare tumors, in the majority of cases best treated by surgical resection. Preoperative localization of insulinoma is challenging. The more precise the preoperative localization the less invasive and safer is the resection. The purpose of the study is to check the impact of a new technique to localize insulinoma on the surgical strategy. FINDINGS We present exact preoperative localization with Glucagon-like peptide-1 receptor (GLP-1R) imaging. This allows a more precise resection thereby reducing surgical access trauma, loss of healthy pancreatic tissue and increasing safety and quality of the surgical intervention. CONCLUSION With the help of precise preoperative localization of insulinoma with GLP-1R imaging the surgeon is able to minimize the amount of resected healthy pancreatic tissue. We hypothesize that GLP-1R imaging will become a preoperative diagnostic tool to be used for many patients scheduled for open or laparoscopic insulinoma resection.
Resumo:
We previously have demonstrated that insulin and insulin-like growth factor-I (IGF-I) down-regulate growth hormone (GH) binding in osteoblasts by reducing the number of surface GH receptors (GHRs). The present study was undertaken to investigate the mechanism of GHR down-regulation. Treatment with 5 nM insulin or IGF-I for 18 hr significantly decreased surface GH binding to 26.4 ± 2.9% and 23.0 ± 2.7% of control (mean ± SE; P < 0.05), respectively. No corresponding reductions in the mRNA level and total cellular content of GHR were found, nor was the rate of receptor internalization affected. The effects on GHR translocation were assessed by measuring the reappearance of GH binding of whole cells after trypsinization to remove the surface receptors. GH binding of control cultures significantly increased (P < 0.05) over 2 hr after trypsinization, whereas no recovery of binding activity was detected in insulin and IGF-I-treated cultures, indicating that GHR translocation was impaired. Studies on the time course of GHR down-regulation revealed that surface GH binding was reduced significantly by 3-hr treatment (P ≤ 0.0005), whereas GHR translocation was completely abolished by 75–90 min with insulin and IGF-I. The inhibition of receptor translocation by insulin, but not IGF-I, was attenuated by wortmannin. In conclusion, insulin and IGF-I down-regulated GH binding in osteoblasts by acutely impairing GHR translocation, with their effects exerted through distinct postreceptor signaling pathways.
Resumo:
In mammals, one of the major actions of insulin-like growth factor I (IGF-I) is to increase skeletal growth by stimulating new cartilage formation. IGF-I stimulates chondrocytes in vitro to synthesize new cartilage matrix, measured by enhanced uptake of 35S-sulfate, but the addition of insulin does not produce a similar effect except when added at high concentrations. However, recent studies have shown that, in teleosts, both insulin and IGF-I are potent activators of 35S-sulfate uptake in gill cartilage. To further characterize the growth-promoting activities of these hormones in fish, we have used reverse transcriptase-linked PCR to analyze the expression of insulin receptor family genes in salmon gill cartilage. Partial cDNA sequences encoding the tyrosine kinase domains from six distinct members of the IR gene family were obtained, and sequence comparisons revealed that four of the cDNAs encoded amino acid sequences that were highly homologous to human IR whereas the encoded sequences from two of the cDNAs were more similar to the human type I IGF receptor (IGF-R). Furthermore, a comparative reverse transcriptase-linked PCR assay revealed that the four putative IR mRNAs expressed in toto in gill cartilage were 56% of that found in liver whereas the expressed amount of the two IGF-R mRNAs was 9-fold higher compared with liver. These results suggest that the chondrogenic actions of insulin and IGF-I in fish are mediated by the ligands binding to their cognate receptors. However, further studies will be required to characterize the binding properties and relative contribution of the individual IR and IGF-R genes.
Resumo:
The incretin hormone glucagon-like peptide-1(7-36)amide (GLP-1) has been deemed of considerable importance in the regulation of blood glucose. Its effects, mediated through the regulation of insulin, glucagon, and somatostatin, are glucose-dependent and contribute to the tight control of glucose levels. Much enthusiasm has been assigned to a possible role of GLP-1 in the treatment of type 2 diabetes. GLIP-l's action unfortunately is limited through enzymatic inactivation caused by dipeptidylpeptidase IV (DPP IV). It is now well established that modifying GLP-1 at the N-terminal amino acids, His7 and Ala8, can greatly improve resistance to this enzyme. Little research has assessed what effect Glu9-substitution has on GLP-1 activity and its degradation by DPP IV. Here, we report that the replacement of Glu9 of GLP-1 with Lys dramatically increased resistance to DPP IV. This analogue (Lys9)GLP-1, exhibited a preserved GLP-1 receptor affinity, but the usual stimulatory effects of GLP-1 were completely eliminated, a trait duplicated by the other established GLP-1-antagonists, exendin (9-39) and GLP-1 (9-36)amide. We investigated the in vivo antagonistic actions of (Lys9)GLP-1 in comparison with GLP-1(9-36)amide and exendin (9-39) and revealed that this novel analogue may serve as a functional antagonist of the GLP-1 receptor.
Resumo:
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K(D), 68.8 +/- 25.2 nM and 167.39 +/- 60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a KD of 55.4 +/- 15.9 nM to laminin and of 290.8 +/- 11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date.
Resumo:
Serpentine receptors comprise a large family of membrane receptors distributed over diverse organisms, such as bacteria, fungi, plants and all metazoans. However, the presence of serpentine receptors in protozoan parasites is largely unknown so far. In the present study we performed a genome-wide search for proteins containing seven transmembrane domains (7TM) in the human malaria parasite Plasmodium falciparum and identified four serpentine receptor-like proteins. These proteins, denoted PfSR1, PfSR10, PfSR12 and PfSR25, show membrane topologies that resemble those exhibited by members belonging to different families of serpentine receptors. Expression of the pfsrs genes was detected by Real Time PCR in P. falciparum intraerythrocytic stages, indicating that they potentially code for functional proteins. We also found corresponding homologues for the PfSRs in five other Plasmodium species, two primate and three rodent parasites. PfSR10 and 25 are the most conserved receptors among the different species, while PfSR1 and 12 are more divergent. Interestingly, we found that PfSR10 and PfSR12 possess similarity to orphan serpentine receptors of other organisms. The identification of potential parasite membrane receptors raises a new perspective for essential aspects of malaria parasite host cell infection.
Neospora caninum excreted/secreted antigens trigger CC-chemokine receptor 5-dependent cell migration
Resumo:
Neospora caninum, the causative agent of neosporosis, is an obligate intracellular parasite considered to be a major cause of abortion in cattle throughout the world. Most studies concerning N. caninum have focused on life cycle, seroepidemiology, pathology and vaccination, while data on host-parasite interaction, such as host cell migration, mechanisms of evasion and dissemination of this parasite during the early phase of infection are still poorly understood. Here we show the ability of excreted/secreted antigens from N. caninum (NcESAs) to attract monocytic cells to the site of primary infection in both in vitro and in vivo assays. Molecules from the family of cyclophilins present on the NcESAs were shown to work as chemokine-like proteins and NcESA-induced chemoattraction involved G(i) protein signaling and participation of CC-chemokine receptor 5 (CCR5). Additionally, we demonstrate the ability of NcESAs to enhance the expression of CCR5 on monocytic cells and this increase occurred in parallel with the chemotactic activity of NcESAs by increasing cell migration. These results suggest that during the first days of infection, N. caninum produces molecules capable of inducing monocytic cell migration to the sites of infection, which will consequently enhance initial parasite invasion and proliferation. Altogether, these results help to clarify some key features involved in the process of cell migration and may reveal virulence factors and therapeutic targets to control neosporosis. (C) 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Octopamine is a biogenic amine neurotransmitter of invertebrates that binds to a G-protein coupled receptor that has seven transmembrane domains. Formamidine pesticides like amitraz are highly specific agonists of the octopamine receptor. Amitraz is used extensively to control the cattle tick, Boophilus microplus, and many other ticks but now there are strains of ticks that are resistant to amitraz. We have isolated a cDNA from the cattle tick, B. miciroplus, that belongs to the biogenic amine family of receptors. The predicted amino acid sequence from this cDNA is most similar to octopamine receptors from insects. The nucleotide sequence of this gene from amitraz-resistant and amitraz-susceptible cattle ticks was identical. Thus, a point mutation/s did not confer resistance to amitraz in the strains we studied. Alternative explanations for resistance to amitraz in B. microplus are discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Purpose We evaluated the involvement of angiotensin II (AngII)-dependent pathways in melanoma growth, through the pharmacological blockage of AT1 receptor by the antihypertensive drug losartan (LOS). Results We showed immunolabeling for both AngII and the AT1 receptor within the human melanoma microenvironment. Like human melanomas, we showed that murine melanomas also express the AT1 receptor. Growth of murine melanoma, both locally and at distant sites, was limited in mice treated with LOS. The reduction in tumor growth was accompanied by a twofold decrease in tumorassociated microvessel density and by a decrease in CD31 mRNA levels. While no differences were found in the VEGF expression levels in tumors from treated animals, reduction in the expression of the VEGFR1 (Flt-1) at the mRNA and protein levels was observed. We also showed downregulation of mRNA levels of both Flt-4 and its ligand, VEGF-C. Conclusions Together, these results show that blockage of AT1 receptor signaling may be a promising anti-tumor strategy, interfering with angiogenesis by decreasing the expression of angiogenic factor receptors.
Resumo:
This paper describes the synthesis of 3-amino-3-(4-chlorophenyl)propanoic acid and the corresponding phosphonic and sulfonic acids, lower homologues of baclofen, phaclofen and saclofen respectively. The chlorinated acids were all weak specific antagonists of GABA at the GABAB receptor, with the sulfonic acid (pA(2) 4.0) being stronger than the phosphonic acid (pA(2) 3.8) and carboxylic acid (pA(2) 3.5).
Resumo:
Insulin-like growth factor-I (IGF-I) is a preiotrophic polypeptide which appears to have roles both as a circulating endocrine hormone and as a locally synthesized paracrine or autocrine tissue factor. IGF-I plays a major role in regulating the growth of cells in vivo and in vitro and initiates metabolic and mitogenic processes in a wide variety of cell types by binding to specific type I receptors in the plasma membrane, In this study, we report the distribution of IGF-I receptors in odontogenic cells at the ultrastructural level using the high resolution protein A-gold technique, In the pre-secretory stage, very little gold label was visible over the ameloblasts and odontoblasts, During the secretory stage the label was mostly seen in association with the cell membranes and endoplasmic reticulum of the ameloblasts. Lysosome-like elements in the post-secretory stage were labelled as well as multivesicular dense bodies, Very little labelling was encountered in the ameloblasts in the transitional stage, where apoptotic bodies were clearly visible, The maturation stage also exhibited labelling of the secretory-like granules in the distal surface. The presence of gold particles over the plasma membrane is an indication that IGF-I receptor is a membrane-bound receptor. Furthermore, the intracellular distribution of the label over the endoplasmic reticulum supports the local synthesis of the IGF-I receptor. The absence of labelling over the transitional ameloblasts suggests that the transitional stage may require the non-expression of IGF-I as a prerequiste or even a trigger for apoptosis.
Resumo:
TRAPS is the most common of the autosomal dominant periodic fever syndromes. It is caused by mutations in the TNFRSF1A gene, which encodes for the type 1 TNF-receptor (TNFR1). We describe here a Brazilian patient with TRAPS associated to a novel TNFRSF1A de novo mutation and the response to anti-TNF therapy. The patient is a 9-year-old girl with recurrent fevers since the age of 3 years, usually lasting 3 to 7 days, and recurring every other week. These episodes are associated with mild abdominal pain, nausea, vomiting and generalized myalgia. Recurrent conjunctivitis and erysipela-like skin lesions in the lower limbs also occur. Laboratory studies show persistent normocytic normochromic anemia, thrombocytosis, elevated erythrocyte sedimentation rate and C-reactive protein. IgD levels are normal. Mutational screening of TNFRSF1A revealed the association of a novel C30F mutation with the common R92Q low-penetrance mutation. The R92Q mutation is seen in 5% of the general population and is associated with an atypical inflammatory phenotype. The patient had a very good response to etanercept, with cessation of fever and normalization of inflammatory markers. Our report expands the spectrum of TNFRSF1A mutations associated with TRAPS, adding further evidence for possible additive effects of a low-penetration R92Q and cysteine residue mutations, and confirms etanercept as an efficacious treatment alternative.
Resumo:
The endocannabinoid anandamide is a possible agonist at the Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel, in addition to its agonist activity at cannabinoid type 1 (CB1) receptor. In the midbrain dorsolateral periaqueductal gray (dlPAC) our previous data showed that CB1 activation induces anxiolytic-like effects. However, the rote of TRPV1 has remained unclear. Thus, in the present study we tested the hypothesis that this channel would contribute to the modulation of anxiety-like behaviour in the dlPAG. Mate Wistar rats received local injections of the TRPV1 antagonist capsazepine (10-60 nmol) and were submitted to the elevated plus-maze (EPM) and to the Vogel test. In addition, animals received local injections of capsaicin (0.01-1nmol), a TRPV1 agonist, and were tested in the same models. In accordance with our hypothesis, capsazepine produced anxiolytic-like effects both in the EPM and in the Vogel test. Capsaicin mimicked these results, which might be attributed to its ability to quickly desensitize the channel. Altogether, our data suggest that, while CB1 receptors seem to inhibit aversive responses in the dlPAG, TRPV1 could facilitate them. Thus, CB1 and TRPV1 may have opposite functions in modulating anxiety-like behaviour in this region. (C) 2008 Elsevier B.V. and ECNP. All rights reserved.
Resumo:
Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic-like effects in rodents and humans after systemic administration. Previous results from our group showed that CBD injection into the bed nucleus of the stria terminalis (BNST) attenuates conditioned aversive responses. The aim of this study was to further investigate the role of this region on the anxiolytic effects of the CBD. Moreover, considering that CBD can activate 5-HT1A receptors, we also verified a possible involvement of these receptors in those effects. Male Wistar rats received injections of CBD (15, 30, or 60 nmol) into the BNST and were exposed to the elevated plus-maze (EPM) or to the Vogel conflict test (VCT), two widely used animal models of anxiety. CBD increased open arms exploration in the EPM as well as the number of punished licks in the VCT, suggesting an anxiolytic-like effect. The drug did not change the number of entries into the enclosed arms of the EPM nor interfered with water consumption or nociceptive threshold, discarding potential confounding factors in the two tests. Moreover, pretreatment with the 5-HT1A receptor antagonist WAY100635 (0.37 nmol) blocked the effects of CBD in both models. These results give further support to the proposal that BNST is involved in the anxiolytic-like effects of CBD observed after systemic administration, probably by facilitating local 5-HT1A receptor-mediated neurotransmission.
Resumo:
The endocannabinoid anandamide, in addition to activating cannabinoid type 1 receptors (CB1), may act as an agonist at transient receptor potential vanilloid type 1 (TRPV1) channels. In the periaqueductal gray, CB1 activation inhibits, whereas TRPV1 increases, anxiety-like behavior. In the medial prefrontal cortex (mPFC), another brain region related to defensive responses, CB1 activation induces anxiolytic-like effects. However, a possible involvement of TRPV1 is still unclear. In the present study, we tested the hypothesis that TRPV1 channel contributes to the modulation of anxiety-like behavior in the mPFC. Male Wistar rats (n = 5-7 per group) received microinjections of the TRPV1 antagonist capsazepine (1-60 nmol) in the ventral portion of the mPFC and were exposed to the elevated plus maze (EPM) or to the Vogel conflict test. Capsazepine increased exploration of open arms in the EPM as well as the number of punished licks in the Vogel conflict test, suggesting anxiolytic-like effects. No changes in the number of entries into the enclosed arms were observed in the EPM, indicating that there were no changes in motor activity. Moreover, capsazepine did not interfere with water consumption or nociceptive threshold, discarding potential confounding factors for the Vogel conflict test. These data suggest that TRPV1 in the ventral mPFC tonically inhibits anxiety-like behavior. TRPV1 could facilitate defensive responses opposing, therefore, the anxiolytic-like effects reported after local activation of CB1 receptors.