863 resultados para To-monomer Transformation
Resumo:
The influence of silver additions on the structure and phase transformation of the Cu-13 wt % Al alloy was studied by differential thermal analysis, X-ray diffraction, scanning electron microscopy and energy dispersive analysis of X-rays. The results indicate that the presence of silver modifies the phase-stability field, the transition temperature and the structure of the alloy. These effects are more pronounced for silver concentrations up to 8 wt %.
Resumo:
Toward the end of the larval phase (pre-pupa), the reproductive systems of Melipona quadrifasciata and Frieseomelitta varia workers are anatomically similar. Scanning electron microscopy showed that during this developmental phase the right and left ovaries are fused and form a heart-shaped structure located above the midgut. Each ovary is connected to the genital chamber by a long and slender lateral oviduct. During pupal development, the lateral oviducts of workers from both species become extremely reduced due to a drastic process of cell death, as shown by transmission electron microscopy. During the lateral oviduct shortening, their simple columnar epithelial cells show some signs of apoptosis in addition to necrosis. Cell death was characterized by cytoplasmic vesiculation, peculiar accumulation of glycogen, and dilation of cytoplasmic organelles such as mitochondria and rough endoplasmic reticulum. The nuclei, at first irregularly contoured, became swollen, with chromatin flocculation and various areas of condensed chromatin next to the nuclear envelope. At the end of the pupal phase, deep recesses marked the nuclei. At emergence, worker and queen reproductive systems showed marked differences, although reduction in the lateral oviducts was an event occurring in both castes. However, in queens the ovarioles increased in length and the spermatheca was larger than that of workers. At the external anatomical level, the reproductive system of workers and queens could be distinguished in the white- and pink-eyed pupal phase. The metamorphic function of the death of lateral oviduct cells, with consequent oviduct shortening, is discussed in terms of the anatomical reorganization of the reproductive system and of the ventrolateral positioning of adult worker bee ovaries. (C) 2000 Wiley-Liss, Inc.
Resumo:
The sesquiterpenes cadina-4,10(15)-dien-3-one (1) and aromadendr-1(10)-en-9-one (squamulosone) (14) along with the triterpenoid methyl ursolate (21) were incubated with the fungus Mucor plumbeus ATCC 4740. Substrates 1, 14 and ursolic acid (20) were isolated from the plant Hyptis verticillata in large quantities. M. plumbeus hydroxylated 1 at C-12 and C-14. When the iron content of the medium was reduced, however, hydroxylation at these positions was also accompanied by epoxidation of the exocyclic double bond. In total nine new oxygenated cadinanes have been obtained. Sesquiterpene 14 was converted to the novel 2α,13-dihydroxy derivative along with four other metabolites. Methyl ursolate (21) was transformed to a new compound, methyl 3β,7β,21β-trihydroxyursa-9(11),12-dien-28-oate (22). Two other triterpenoids, 3β,28-dihydroxyurs-12-ene (uvaol) (23) and 3β,28-bis(dimethylcarbamoxy)urs-12-ene (24) were not transformed by the micro-organism, however. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We report a case of a pleomorphic xantoastrocytoma which manifested itself as a cystic isodense lesion in the right fronto-temporal lobe in a 26 year-old woman. It appeared as a soft yellow tumor with cystic cavities on surgery. Five months after this surgery, the patient was submitted to a new operation, which revealed a friable tumor, easily differentiated from the normal parenchyma, with cystic components. The histopathological examination demonstrated pleomorphic xanthoastrocytoma with malignant transformation. Histologically, the tumor at first procedure was composed of pleomorphic astrocytes with multinucleated and foamy cells. A rare case of malignant transformation in pleomorphic xanthoastrocytoma is presented, discussed and illustrated in this paper.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this paper is to show an alternative methodology to calculate transmission line parameters per unit length. With this methodology the transmission line parameters can be obtained starting from the phase currents and voltages in one terminal of the line. First, the article shows the classical methodology to calculate frequency dependent transmission line parameters by using Carson's and Pollaczeck's equations for representing the ground effect and Bessel's functions to represent the skin effect. After that, it is shown a new procedure to calculate frequency dependent transmission line parameters directly from currents and voltages of the line that is already built. Then, this procedure is applied in a two-phase transmission line whose parameters have been previously calculated by using the classical methodology. Finally, the results obtained by using the new procedure and by using the classical methodology are compared. ©2005 IEEE.
Resumo:
For a typical non-symmetrical system with two parallel three phase transmission lines, modal transformation is applied using some examples of single real transformation matrices. These examples are applied searching an adequate single real transformation matrix to two parallel three phase transmission line systems. The analyses are started with the eigenvector and eigenvalue studies, using Clarke's transformation or linear combinations of Clarke's elements. The Z C and parameters are analyzed for the case that presents the smallest errors between the exact eigenvalues and the single real transformation matrix application results. The single real transformation determined for this case is based on Clarke's matrix and its main characteristic is the use of a unique homopolar reference. So, the homopolar mode becomes a connector mode between the two three-phase circuits of the analyzed system. ©2005 IEEE.
Resumo:
In transmission line transient analyses, a single real transformation matrix can obtain exact modes when the analyzed line is transposed. For non-transposed lines, the results are not exact. In this paper, non-symmetrical and non transposed three-phase line samples are analyzed with a single real transformation matrix application (Clarke's matrix). Some interesting characteristics of this matrix application are: single, real, frequency independent, line parameter independent, identical for voltage and current determination. With Clarke's matrix use, mathematical simplifications are obtained and the developed model can be applied directly in programs based on time domain. This model works without convolution procedures to deal with phase-mode transformation. In EMTP programs, Clarke's matrix can be represented by ideal transformers and the frequency dependent line parameters can be represented by modified-circuits. With these representations, the electrical values at any line point can be accessed for phase domain or mode domain using the Clarke matrix or its inverse matrix. For symmetrical and non-transposed lines, the model originates quite small errors. In addition, the application of the proposed model to the non-symmetrical and non-transposed three phase transmission lines is investigated. ©2005 IEEE.
Resumo:
Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal), R(radial) and T(tangential) are coincident with the Cartesian axes (x, y, z), is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young's modulus and shear modulus, with fiber orientation are presented.
Resumo:
Managing the great complexity of enterprise system, due to entities numbers, decision and process varieties involved to be controlled results in a very hard task because deals with the integration of its operations and its information systems. Moreover, the enterprises find themselves in a constant changing process, reacting in a dynamic and competitive environment where their business processes are constantly altered. The transformation of business processes into models allows to analyze and redefine them. Through computing tools usage it is possible to minimize the cost and risks of an enterprise integration design. This article claims for the necessity of modeling the processes in order to define more precisely the enterprise business requirements and the adequate usage of the modeling methodologies. Following these patterns, the paper concerns the process modeling relative to the domain of demand forecasting as a practical example. The domain of demand forecasting was built based on a theoretical review. The resulting models considered as reference model are transformed into information systems and have the aim to introduce a generic solution and be start point of better practical forecasting. The proposal is to promote the adequacy of the information system to the real needs of an enterprise in order to enable it to obtain and accompany better results, minimizing design errors, time, money and effort. The enterprise processes modeling are obtained with the usage of CIMOSA language and to the support information system it was used the UML language.
Resumo:
The objective of this paper is to show an alternative methodology to estimate per unit length parameters of a line segment of a transmission line. With this methodology the line segment parameters can be obtained starting from the phase currents and voltages in receiving and sending end of the line segment. If the line segment is represented as being one or more π circuits whose frequency dependent parameters are considered lumped, its impedance and admittance can be easily expressed as functions of the currents and voltages at the sending and receiving end. Because we are supposing that voltages and currents at the sending and receiving end of the line segment (in frequency domain) are known, it is possible to obtains its impedance and admittance and consequently its per unit length longitudinal and transversal parameters. The procedure will be applied to estimate the longitudinal and transversal parameters of a small segment of a single-phase line that is already built. © 2006 IEEE.
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. ©2006 IEEE.
Resumo:
The paper shows an alternative methodology to calculate transmission line parameters per unit length and to apply it in a three-phase line with a vertical symmetry plane. This procedure is derived from a general procedure where the modal transformation matrix of the line is required. In this paper, the unknown modal transformation matrix requested by general procedure is substituted by Clarke's matrix. With the substitution that is shown in the paper, the transmission line parameters can be obtained starting from impedances measured in one terminal of the line. First, the article shows the classical methodology to calculate frequency dependent transmission line parameters by using Carson and Pollaczeck's equations for representing the ground effect and Bessel's functions to represent the skin effect. After that, a new procedure is shown to calculate frequency dependent transmission line parameters directly from currents and voltages of an existing line. Then, this procedure is applied in a non-transposed three-phase transmission line whose parameters have been previously calculated by using the classical methodology. Finally, the results obtained by using the new procedure and by using the classical methodology are compared. The article shows simulation results for typical frequency spectra of switching transients (10 Hz to 10 kHz). Results have shown that procedure has © 2006 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE.