995 resultados para Three-jet resonances
Resumo:
In this paper, we present a novel differential geometric characterization of two- and three-degree-of-freedom rigid body kinematics, using a metric defined on dual vectors. The instantaneous angular and linear velocities of a rigid body are expressed as a dual velocity vector, and dual inner product is defined on this dual vector, resulting in a positive semi-definite and symmetric dual matrix. We show that the maximum and minimum magnitude of the dual velocity vector, for a unit speed motion, can be obtained as eigenvalues of this dual matrix. Furthermore, we show that the tip of the dual velocity vector lies on a dual ellipse for a two-degree-of-freedom motion and on a dual ellipsoid for a three-degree-of-freedom motion. In this manner, the velocity distribution of a rigid body can be studied algebraically in terms of the eigenvalues of a dual matrix or geometrically with the dual ellipse and ellipsoid. The second-order properties of the two- and three-degree-of-freedom motions of a rigid body are also obtained from the derivatives of the elements of the dual matrix. This results in a definition of the geodesic motion of a rigid body. The theoretical results are illustrated with the help of a spatial 2R and a parallel three-degree-of-freedom manipulator.
Resumo:
Synthesis, crystal structures, linear and nonlinear optical properties of tris D-pi-A cryptand derivatives with C-3 symmetry are reported. Three fold symmetry inherent in the cryptand molecules has been utilized for designing these molecules. Molecular nonlinearities have been measured by hyper-Rayleigh scattering (HRS) experiments. Among the compounds studied, L-1 adopts non-centrosymmetric crystal structure. Compounds L-1, L-2, L-3 and L-4 show a measurable SHG powder signal. These molecules are more isotropic and have significantly higher melting points than the classical p-nitroaniline based dipolar NLO compounds, making them useful for further device applications. Besides, different acceptor groups can be attached to the cryptand molecules to modulate their NLO properties.
Resumo:
Direct numerical simulation (DNS) results of autoignition in anon-premixed medium under an isotropic, homogeneous, and decaying turbulence are presented. The initial mixture consists of segregated fuel parcels randomly distributed within warm air, and the entire medium is subjected to a three-dimensional turbulence. Chemical kinetics is modeled by a four-step reduced reaction mechanism for autoignition of n-heptane/air mixture. Thus, this work overcomes the principal limitations of a previous contribution of the authors on two-dimensional DNS of autoignition with a one-step reaction model. Specific attention is focused on the differences in the effects of two- and three-dimensional turbulence on autoignition characteristics. The three-dimensional results show that ignition spots are most likely to originate at locations jointly corresponding to the most reactive mixture fraction and low scalar dissipation rate. Further, these ignition spots are found to originate at locations corresponding to the core of local vortical structures, and after ignition, the burning gases move toward the vortex periphery Such a movement is explained as caused by the cyclostrophic imbalance developed when the local gas density is variable. These results lead to the conclusion that the local ignition-zone structure does not conform to the classical stretched flamelet description. Parametric studies show that the ignition delay time decreases with an increase in turbulence intensity. Hence, these three-dimensional simulation results resolve the discrepancy between trends in experimental data and predictions from DNSs of two-dimensional turbulence. This qualitative difference between DNS results from three- and two-dimensional simulations is discussed and attributed to the effect of vortex stretching that is present in the former, but not in the latter.
Resumo:
The dynamics of three liquid crystals, 4'(pentyloxy)-4-biphenylcarbonitrile (5-OCB), 4'-pentyl-4-biphenylcarbonitrile (5-CB), and 1-isothiocyanato-(4-propylcyclohexyl)benzene (3-CHBT), are investigated from very short time (similar to1 ps) to very long time (>100 ns) as a function of temperature using optical heterodyne detected optical Kerr effect experiments. For all three liquid crystals, the data decay exponentially only on the longest time scale (> several ns). The temperature dependence of the long time scale exponential decays is described well by the Landau-de Gennes theory of the randomization of pseudonematic domains that exist in the isotropic phase of liquid crystals near the isotropic to nematic phase transition. At short time, all three liquid crystals display power law decays. Over the full range of times, the data for all three liquid crystals are fit with a model function that contains a short time power law. The power law exponents for the three liquid crystals range between 0.63 and 0.76, and the power law exponents are temperature independent over a wide range of temperatures. Integration of the fitting function gives the empirical polarizability-polarizability (orientational) correlation function. A preliminary theoretical treatment of collective motions yields a correlation function that indicates that the data can decay as a power law at short times. The power law component of the decay reflects intradomain dynamics. (C) 2002 American Institute of Physics.
Resumo:
Filtering methods are explored for removing noise from data while preserving sharp edges that many indicate a trend shift in gas turbine measurements. Linear filters are found to be have problems with removing noise while preserving features in the signal. The nonlinear hybrid median filter is found to accurately reproduce the root signal from noisy data. Simulated faulty data and fault-free gas path measurement data are passed through median filters and health residuals for the data set are created. The health residual is a scalar norm of the gas path measurement deltas and is used to partition the faulty engine from the healthy engine using fuzzy sets. The fuzzy detection system is developed and tested with noisy data and with filtered data. It is found from tests with simulated fault-free and faulty data that fuzzy trend shift detection based on filtered data is very accurate with no false alarms and negligible missed alarms.
Resumo:
Two new open-framework iron fluorophosphates, [C(4)N(2)H(12)](0.5) [FeF(HPO(4))(H(2)PO(4))] (I) and [C(4)N(2)H(12)][Fe(4)F(2)(H(2)O)(4)(PO(4))(4)]. 0.5H(2)O (II), were synthesized hydrothermally using piperazine as a templating agent. The structures were determined by single-crystal X-ray diffraction. Compound I crystallizes in the orthorhombic space group Pbca, a = 7.2126(2) Angstrom, b = 14.2071(4) Angstrom, c = 17.1338(2) Angstrom, Z = 8. The structure is composed of infinite anionic chains of [FeF(HPO(4))(H(2)PO(4))](n)(-) built by trans-fluorine sharing FeF(2)O(4) octahedra. These chains are similar to those found in tancoite-type minerals. Compound II crystallizes in the monoclinic space group P2(1)/n, a = 9.9045(3) Angstrom, b = 12.3011(3) Angstrom, c = 17.3220(4) Angstrom, beta = 103.7010(10)degrees, Z = 4. The structure of compound II has a three-dimensional (3D) architecture with an eight-membered channel along the b axis, in which protonoted piperazine molecules reside. The complex framework is built from two types of secondary building unit (SBU): one hexamer [Fe(3)F(2)(H(2)O)(2)(PO(4))(3)] (SBU6), and one dimer [FeO(4)(H(2)O)(2)PO(4)] (SBU2). The vertex sharing between these SBUs create the 3D structure.
Resumo:
The removal of noise and outliers from measurement signals is a major problem in jet engine health monitoring. Topical measurement signals found in most jet engines include low rotor speed, high rotor speed. fuel flow and exhaust gas temperature. Deviations in these measurements from a baseline 'good' engine are often called measurement deltas and the health signals used for fault detection, isolation, trending and data mining. Linear filters such as the FIR moving average filter and IIR exponential average filter are used in the industry to remove noise and outliers from the jet engine measurement deltas. However, the use of linear filters can lead to loss of critical features in the signal that can contain information about maintenance and repair events that could be used by fault isolation algorithms to determine engine condition or by data mining algorithms to learn valuable patterns in the data, Non-linear filters such as the median and weighted median hybrid filters offer the opportunity to remove noise and gross outliers from signals while preserving features. In this study. a comparison of traditional linear filters popular in the jet engine industry is made with the median filter and the subfilter weighted FIR median hybrid (SWFMH) filter. Results using simulated data with implanted faults shows that the SWFMH filter results in a noise reduction of over 60 per cent compared to only 20 per cent for FIR filters and 30 per cent for IIR filters. Preprocessing jet engine health signals using the SWFMH filter would greatly improve the accuracy of diagnostic systems. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Two-dimensional NMR and molecular dynamics simulations have been used to determine the three-dimensional structures of two hairpin DNA structures: d-CTAGAG GATCCUTTTGGATCCT (abbreviated as U1-hairpin) and d-CTAGAGGATCCTTUTGGATCCT (abbreviated as U3-hairpin). The (1) H resonances of both of these hairpin structures have been assigned almost completely. NMR restrained molecular dynamics and energy minimization procedures have been used to describe the three-dimensional structures of these hairpins. This study and concurrent NMR structural studies on two other d-CTAGAGGA TCCTUTTGGATCCT (abbreviated as U2-hairpin) and d-CTAGAGGATCCTTTUGGATCCT (abbreviated as U4-hairpin) have shed light upon various interactions reported between Echerichia coli uracil DNA glycosylase (UDG) and uracil-containing DNA. The backbone torsion angles, which partially influence the local conformation of U12 and U14 in U1 and U3-hairpins, respectively, are probably locked in the trans conformation as in the case of U-13 in the U2-hairpin. Such a stretched-out backbone conformation in the vicinity of U-12 and U-14 is thought to be the reason why the K-m value is poor for U1- and U3-hairpins as it is for the U2-hairpin. Furthermore, the bases U-12 and U-14 in both U1- and U3-hairpins adopt an anti conformation, in contrast with the base conformation of U-13 in the U2-hairpin, which adopts a syn conformation. The clear discrepancy observed in the U-base orientation with respect to the sugar moieties could explain why the V-max value is 10- to 20-fold higher for the U1- and U3-hairpins compared with the U2-hairpin. Taken together, these observations support our interpretation that the unfavourable backbone results in a poor K-m value, whereas the unfavourable nucleotide conformation results in a poor V-max value. These two parameters therefore make the U1- and U3-hairpins better substrates for UDG compared with the U2-hairpin, as reported earlier [Kumar, N. V. & Varshney, U. (1997) Nucleic Acids Res. 25, 2336-2343.].
Resumo:
A three- dimensional, transient model is developed for studying heat transfer, fluid flow, and mass transfer for the case of a single- pass laser surface alloying process. The coupled momentum, energy, and species conservation equations are solved using a finite volume procedure. Phase change processes are modeled using a fixed-grid enthalpy-porosity technique, which is capable of predicting the continuously evolving solid- liquid interface. The three- dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. The model is simulated for different values of various significant processing parameters such as laser power, scanning speed, and powder feedrate in order to assess their influences on geometry and dynamics of the pool, cooling rates, as well as species concentration distribution inside the substrate. Effects of incorporating property variations in the numerical model are also discussed.
Resumo:
Transformations of the layered zinc phosphates of the compositions [C6N4H22](0.5) [Zn-2 (HPO4)(3)], I, [C3N2H12][Zn-2 (HPO4)(3)], II and [C3N2OH12][Zn-2 (HPO4)(3)], III, containing triethylenetetramine, 1,3-diaminopropane, and 1,3-diamino-2-hydroxypropane, respectively, have been investigated under different conditions. On heating in water, I transforms to a one-dimensional (1-D) ladder and a three-dimensional (3-D) structure, while II gives rise to only a two-dimensional (2-D) layered structure. In the transformation reaction of I with zinc acetate, the same ladder and 3-D structures are obtained along with a tubular layer. Under similar conditions II gives a layered structure formed by the joining of two ladder motifs. III, on the other hand, is essentially unreactive when heated with water and zinc acetate, probably because the presence of the hydroxy group in the amine which hydrogen bonds to the framework. In the presence of piperazine, I, II and III give rise to a four-membered, corner-shared linear chain which is likely to be formed via the ladder structure. In addition, 2-D and 3-D structures derived from the 1-D linear chain or ladder structures are also formed. The primary result from the study is that the layers produce 1-D ladders, which then undergo other transformations. It is noteworthy that in the various transformations carried out, most of the products are single-crystalline.
Resumo:
The Bénard–Marangoni convection is studied in a three-dimensional container with thermally insulated lateral walls and prescribed heat flux at lower boundary. The upper surface of the incompressible, viscous fluid is assumed to be flat with temperature dependent surface tension. A Galerkin–Tau method with odd and even trial functions satisfying all the essential boundary conditions except the natural boundary conditions at the free surface has been used to solve the problem. The critical Marangoni and Rayleigh numbers are determined for the onset of steady convection as a function of aspect ratios x0 and y0 for the cases of Bénard–Marangoni, pure Marangoni and pure Bénard convections. It is observed that critical parameters are decreasing with an increase in aspect ratios. The flow structures corresponding to the values of the critical parameters are presented in all the cases. It is observed that the critical parameters are higher for case with heat flux prescribed than those corresponding to the case with prescribed temperature. The critical Marangoni number for pure Marangoni convection is higher than critical Rayleigh number corresponding to pure Bénard convection for a given aspect ratio whereas the reverse was observed for two-dimensional infinite layer.
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Resumo:
The effect of large mass injection on the following three-dimensional laminar compressible boundary-layer flows is investigated by employing the method of matched asymptotic expansions: (i) swirling flow in a laminar compressible boundary layer over an axisymmetric surface with variable cross-section and (ii) laminar compressible boundary-layer flow over a yawed infinite wing in a hypersonic flow. The resulting equations are solved numerically by combining the finite-difference technique with quasi-linearization. An increase in the swirl parameter, the yaw angle or the wall temperature is found to be capable of bringing the viscous layer nearer the surface and reducing the effects of massive blowing.