867 resultados para Thermal energy
Resumo:
Biofuels and their blends with fossil fuel are important energy resources, whose production and application have been largely increased internationally. This study focuses on the evaluation of the activation energy of the thermal decomposition of three pure fuels: farnesane (renewable diesel from sugar cane), biodiesel and fossil diesel and their blends (20% farnesene and 80% of fossil diesel - 20F80D and 20% farnesane, 50% fossil diesel and 30% biodiesel - 20F50D30B). Activation energy has been determined from thermogravimetry and Model-Free Kinetics. Results showed that not only the cetane number is important to understand the behavior of the fuels regarding ignition delay, but also the profile of the activation energy versus conversion curves shows that the chemical reactions are responsible for the performance at the beginning of the process. In addition, activation energy seemed to be suitable in describing reactivity in the case of blends of renewable and fossil fuels. © 2013 Elsevier B.V.
Resumo:
Two different cationic polymers of the same chemical type and with very similar chemical structures were reacted with a natural bentonite over a wide range of polymer/clay ratios. This study involved the synthesis of cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene. Ionenes are ion-containing polymers that contain quaternary nitrogen atoms in the main macromolecular chain as opposed to a pendant chain. The CHN content, basal spacing, and elemental composition of each of the polymer-clay complexes were analyzed by X-ray diffraction, X-ray fluorescence, and thermogravimetry. All the polycations reacted to form interlayer complexes with clay, which displaced more Na+ and little Ca2+. Sodium and calcium were both present as interlayer cations in the clay and its complexes. The TG/DTG curves show that both polymers underwent thermal degradation in more than one stage. Specifically, 3,6-ionene was found to undergo two stages of decomposition and 3,6-dodecylionene undergo three stages. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174,85 kJ mol-1) complexes have greater thermal stability than 3,6-ionene (E = 115,52 kJ mol-1) complexes. The mechanism of degradation suggests a direct interaction with the dodecyl chain containing 12 carbons, which are present in 3,6-dodecylionene but not in 3,6-ionene. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Sintering of porous alumina obtained by biotemplate fibers for low thermal conductivity applications
Resumo:
In this research report, a sintering process of porous ceramic materials based on Al2O3 was employed using a method where a cation precursor solution is embedded in an organic fibrous cotton matrix. For porous green bodies, the precursor solution and cotton were annealed at temperatures in the range of 100-1600°C using scanning electron microscopy (SEM) and thermogravimetric (TG) analysis to obtain a porous body formation and disposal process containing organic fibers and precursor solution. In a structure consisting of open pores and interconnected nanometric grains, despite the low porosity of around 40% (calculated geometrically), nitrogen physisorption determined a specific surface area of 14m2/g, which shows much sintering of porous bodies. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analytical methods revealed a predominant amount of α-Al2O3 in the sintered samples. Thermal properties of the sintered Al2O3 fibers were obtained by using the Laser Flash which resulted in the lower thermal conductivity obtained by α-Al2O3 and therefore improved its potential use as an insulating material. © 2012 Elsevier Ltd.
Resumo:
Urban centers have a huge demand for electricity and the growing problem of the solid waste management generated by their population, a relevant social and administrative problem. The correct disposal of the municipal solid waste (MSW) generated in cities is one of the most complex engineering problems that involves logistics, safety, environmental and energetic aspects for its adequate management. Due to a national policy of solid wastes recently promulgated, Brazilian cities are evaluating the technical and economic feasibility of incinerating the non-recyclable waste. São José dos Campos, a São Paulo State industrialized city, is considering the composting of organic waste for biogas production and mass incineration of non-recyclable waste. This paper presents a waste-to-energy system based on the integration of gas turbines to a MSW incinerator for producing thermal and electric energy as an alternative solution for the solid waste disposal in São José dos Campos, SP. A technical and economic feasibility study for the hybrid combined cycle plant is presented and revealed to be attractive when carbon credit and waste tax are included in the project income. © 2013 Elsevier Ltd.
Resumo:
Bicuíba belongs to the Virola bicuhyba (Schott ex Spreng.) Warb species, Miristicaceas (Myristicaceae) family, which is frequently found in the Atlantic Forest of South and Southeast Brazil. Extraction of the Bicuíba oil was carried out and characterized by gas chromatography. The composition of in nature of this oil indicates that there is a predominance of saturated fatty acids with ~35 % lauric acid and ~40 % myristic acid. Details concerning the thermal behavior were evaluated by thermogravimetry, differential thermal analysis, and differential scanning calorimetry under oxygen and nitrogen atmospheres, showing thermal stability between 208 and 210 °C, respectively. Additionally, the kinetic studies were evaluated from several heating rates with a sample mass of 5 and 20 mg in open crucibles. The obtained data were evaluated with the isoconversional method kinetic, where the values of activation energy (Ea/kJ mol-1) were plotted in function of the conversion degree (α). © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
In this work we study two different spin-boson models. Such models are generalizations of the Dicke model, it means they describe systems of N identical two-level atoms coupled to a single-mode quantized bosonic field, assuming the rotating wave approximation. In the first model, we consider the wavelength of the bosonic field to be of the order of the linear dimension of the material composed of the atoms, therefore we consider the spatial sinusoidal form of the bosonic field. The second model is the Thompson model, where we consider the presence of phonons in the material composed of the atoms. We study finite temperature properties of the models using the path integral approach and functional methods. In the thermodynamic limit, N→∞, the systems exhibit phase transitions from normal to superradiant phase at some critical values of temperature and coupling constant. We find the asymptotic behavior of the partition functions and the collective spectrums of the systems in the normal and the superradiant phases. We observe that the collective spectrums have zero energy values in the superradiant phases, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the models. Our analysis and results are valid in the limit of zero temperature β→∞, where the models exhibit quantum phase transitions. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Thermal-oxidative degradation behaviours of raw natural rubber (NR) have been investigated by using thermogravimetry analysis in inert and oxidative atmospheres and the plasticity retention index (PRI). The activation energy E a, was calculated using Horowitz-Metzger and Coats-Redfern methods and compared with PRI. The E a values obtained by each method were in good agreement with each other. The June samples are the least stable rubbers among the studied ones, whereas February samples exhibited the highest values of activation energy, therefore in agreement with the PRI behaviour, which indicates that the thermo-oxidative stability of the June samples are the poorest during the thermo-oxidative degradation reaction. Natural rubber is a product of biological origin, and thus these variations in the values of thermal behaviour and PRI might be related to the genetic differences and alterations of climatic conditions that act directly on the synthesis of non-rubber constituents, which are generally reflected in latex and rubber properties. © 2013 Institute of Materials, Minerals and Mining.
Resumo:
We are developing two-layered Yttrium Barium Copper Oxide (YBCO) thin film structures for energy efficient data links for superconducting electronics and present the results of their property measurements. High temperature superconductors (HTS) are advantageous for the implementation of energy-efficient cables interconnecting low temperature superconductor-based circuits and other cryogenic electronics circuits at higher temperature stages. The advantages of the HTS cables come from their low loss and low dispersion properties, allowing ballistic transfer of low power signals with very high bandwidth, low heat conduction and negligible inter-line crosstalk. The microstrip line cable geometry for typical materials is a two-layered film, in which the two superconducting layers are separated by an insulation layer with a minimized permittivity. We have made a proof of concept design of two YBCO films grown by pulsed laser deposition and then assembled into a sandwich with uniform insulating interlayer of tens of micrometers thick. We report on results obtained from such systems assembled in different ways. Structural and electromagnetic properties have been examined on individual films and on the corresponding sandwich composite. © 2013 IEEE.
Resumo:
Includes bibliography
Resumo:
Includes bibliography.
Resumo:
A castanha-do-Brasil (Bertholletia excelsea H. B. K.) destaca-se por seus elevados teores em lipídios e proteínas de alta qualidade biológica, parâmetros que justificam a necessidade de maiores pesquisas e incentivos para a elaboração de novos produtos comerciais. No presente estudo, busca-se identificar novas formas de aproveitamento tecnológico dessas amêndoas pela indústria alimentícia, através de seu processamento sobre a forma de farinha sem alteração do teor energético. Os resultados após sua elaboração mostraram um produto com alto valor energético 431,48 kcal.100 g–1, teor de proteína de 45,92 g.100 g–1 e fibra alimentar de 17,14%. As análises térmicas indicam que a introdução de outro componente proteico, como o isolado proteico de soja, não altera as reações e comportamentos térmicos. Já as morfológicas evidenciaram estruturas granulares semelhantes à estrutura das matrizes de proteínas globulares. Constata-se que, após o processamento e obtenção de farinha, o produto mantém seu alto teor energético-proteico e, ao ser submetido a altas temperaturas, mantém suas características.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Monitoring non-ionizing radiant energy is increasingly demanded for many applications such as automobile, biomedical and security system. Thermal type infrared (IR) sensors can operate at room temperature and pyroelectric materials have high sensitivity and accuracy for that application. Working as thermal transducer pyroelectric sensor converts the non-quantified thermal flux into the output measurable quantity of electrical charge, voltage or current. In the present study the composite made of poly(vinylidene fluoride) -PVDF and lead zirconate titanate (PZT) partially recovered with polyaniline (PAni) conductor polymer has been used as sensor element. The pyroelectric coefficient p(T) was obtained by measuring the pyroelectric reversible current, i.e., measuring the thermally stimulated depolarization current (TSDC) after removing all irreversible contribution to the current such as injected charge during polarization of the sample. To analyze the sensing property of the pyroelectric material, the sensor is irradiated by a high power light source (halogen lamp of 250 W) that is chopped providing a modulated radiation. A device assembled in the laboratory is used to change the light intensity sensor, an aluminum strip having openings with diameters ranging from 1 to 10 mm incremented by one millimeter. The sensor element is assembled between two electrodes while its frontal surface is painted black ink to maximize the light absorption. The signal from the sensor is measured by a Lock-In amplifier model SR530 -Stanford Research Systems. The behavior of the output voltage for an input power at several frequencies for PZT-PAni/PVDF (30/ 70 vol%) composite follows the inverse power law (1/ f) and the linearity can be observed in the frequency range used.