987 resultados para The East


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The stratigraphic architecture, structure and Cenozoic tectonic evolution of the Tan-Lu fault zone in Laizhou Bay, eastern China, are analyzed based on interpretations of 31 new 2D seismic lines across Laizhou Bay. Cenozoic strata in the study area are divided into two layers separated by a prominent and widespread unconformity. The upper sedimentary layer is made up of Neogene and Quaternary fluvial and marine sediments, while the lower layer consists of Paleogene lacustrine and fluvial facies. In terms of tectonics, the sediments beneath the unconformity can be divided into four main structural units: the west depression, central uplift, east depression and Ludong uplift. The two branches of the middle Tan-Lu fault zone differ in their geometry and offset: the east branch fault is a steeply dipping S-shaped strike-slip fault that cuts acoustic basement at depths greater than 8 km, whereas the west branch fault is a relatively shallow normal fault. The Tan-Lu fault zone is the key fault in the study area, having controlled its Cenozoic evolution. Based on balanced cross-sections constructed along transverse seismic line 99.8 and longitudinal seismic line 699.0, the Cenozoic evolution of the middle Tan-Lu fault zone is divided into three stages: Paleocene-Eocene transtension, Oligocene-Early Miocene transpression and Middle Miocene to present-day stable subsidence. The reasons for the contrasting tectonic features of the two branch faults and the timing of the change from transtension to transpression are discussed. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two deep sea cores (Ph05-5, 16.05 degrees N, 124.34 degrees E, water depth 3382m and WP3: 22.15 degrees N, 122.95 degrees E, water depth 2700m) retrieved from the Kuroshio source region of the western Philippine Sea were selected to carry out the CaCO3 and calcareous nannofossil faunas study. Based on AMS(14)C data and comparing tire oxygen isotope curve with SPECMAP delta O-18 (Martinson et al., 1987) a stratigraphy was established. And, combining the changes of primary productivity and dissolution index of carbonate, the carbonate cycle and its control factors were analyzed in this region during the last 190ka BP. The carbonate contents showed higher values in the glacial periods and lower values during the interglacial and Holocene periods, which characteristics was similar to the tendency of "Pacific Type" carbonate cycle. However, there were high carbonate contents in the warm period and low values during the cold interval, which displayed the same tendency with the "Atlantic Type" carbonate cycle during the last glacial period (MIS4-2) in the east of Phillipines. The variations of primary productivity and carbonate dissolution index indicated that the carbonate dissolution was a major factor controlling the carbonate content in tire cast of Philippines, and the variations in carbonate contents were mainly affected by the productivity of calcareous organism in the Southeast of Taiwan. The "Atlantic Type" carbonate cycle in the cast of Phillipines during the last glacial period (MIS4-2) was an effect of the process of dissolution combined with the change of primary productivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

C-37 unsaturated alkenones were analyzed on a core retrieved from the middle Okinawa Trough. The calculated U-37(K') displays a trend generally parallel with those of the oxygen isotopic compositions of two planktonic foraminiferal species, Neogloboquadrina dutertrei and Globigerinoides sacculifer, suggesting that in this region, SST has varied in phase with global ice volume change since the last glacial -interglacial cycle. The U-37(K')-derived SST ranged from ca. 24.0 to 27.5 degrees C, with the highest value 27.5 degrees C occurring in marine isotope stage 5 and the lowest similar to 24.0 degrees C in marine isotope stage 2. This trend is consistent with the continental records from the East Asian monsoon domain and the marine records from the Equatorial Pacific. The deglacial increase of the U-37(K')-derived SST is similar to 2.4 degrees C from the Last Glacial Maximum to the Holocene. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Locating the quantitized natural sediment fingerprints is an important work for marine sediment dynamics study. The total of 146 sediment samples were collected from the Shelf of the East China Sea and five rivers, including Huanghe (Yellow), Changjiang (Yangtze), Qiantang, Ou and Min River. The sediment grain size and the contents of rare earth elements (REEs) were measured with laser particle size analyzer and ICP-MS technology. The results show that absolute REE content (Sigma REE) and the concentration ratio of light REEs to heavy REEs (L/HREE) are different in the sediments among those rivers. There are higher REE contents in being less than 2 m and 2-31 mu m fractions in the Changjiang Estuary surface sediments. The REE contents of bulk sediment are dominated by the corresponding values of those leading size-fractions. Sigma REE of sediment is higher close to the estuaries and declines seaward on the inner shelf of the East China Sea (ECS). The L/HREE ratio has a tendency of increase southward from 28 degrees N. Hydrodynamic conditions plays a predominate role on spacial distributions of the surficial sediment's REE parameters. In some situations, the currents tend to remove the coarser light grains from initial populations, as well as the deposit of the finer heavy mineral grains. In other situations, the currents will change the ratio of sediment constituents, such as ratio between silts and clays in the sediments. As a result, the various values of Sigma REE or L/HREE ratio in different bulk sediments are more affected by the change of size-fractions than source location. Under the long-term stable hydrodynamic environment, i.e., the East China Sea Shelf, new sediment transport model based on the size and density gradation concept may help to understand the spatial distribution patterns of REE parameters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-term observation. In this paper, hydrographic observation data of 1957-1996 are collected and reviewed to study climatological variability in northern ECS. Significant warming trends are found in both summer and winter. In summer, the average SST is about 0.46A degrees C higher during the period of 1977-1996 than that of 1957-1976, and the Taiwan Warm Current Water (TWCW) was strengthened. In winter, despite of the cooling effect in the coastal areas adjacent to the Changjiang (Yangtze) River Estuary (CRE), the average SST increase was about 0.53A degrees C during the same period. The causes of this SST warming up in summer are different from in winter. The warming trend and intensification of the TWCW in summer were primarily influenced by the strengthening of the Kuroshio transport, while the warming in winter was mainly induced by the variability of the climate system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent waters from 1930 to 2002 (510 143 profiles). A good temperature profile is reconstructed based on several subsurface in situ temperature observations and the thermocline was estimated using the model. The results show that: 1) For the study area, the former four principal components can explain 95% of the overall variance, and the vertical distribution of temperature is most stable using the in situ temperature observations near the surface. 2) The model verifications based on the observed CTD data from the East China Sea (ECS), South China Sea (SCS) and the areas around Taiwan Island show that the reconstructed profiles have high correlation with the observed ones with the confidence level > 95%, especially to describe the characteristics of the thermocline well. The average errors between the reconstructed and observed profiles in these three areas are 0.69A degrees C, 0.52A degrees C and 1.18A degrees C respectively. It also shows the model RMS error is less than or close to the climatological error. The statistical model can be used to well estimate the temperature profile vertical structure. 3) Comparing the thermocline characteristics between the reconstructed and observed profiles, the results in the ECS show that the average absolute errors are 1.5m, 1.4 m and 0.17A degrees C/m, and the average relative errors are 24.7%, 8.9% and 22.6% for the upper, lower thermocline boundaries and the gradient, respectively. Although the relative errors are obvious, the absolute error is small. In the SCS, the average absolute errors are 4.1 m, 27.7 m and 0.007A degrees C/m, and the average relative errors are 16.1%, 16.8% and 9.5% for the upper, lower thermocline boundaries and the gradient, respectively. The average relative errors are all < 20%. Although the average absolute error of the lower thermocline boundary is considerable, but contrast to the spatial scale of average depth of the lower thermocline boundary (165 m), the average relative error is small (16.8%). Therefore the model can be used to well estimate the thermocline.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A global wavenumber-3 dipole SST mode is showed to exist in the Southern Hemisphere subtropical climate variability in austral summer. A positive (negative) phase of the mode is characterized by cool (warm) SST anomalies in the east and warm (cool) SST anomalies in the southwest of the south Indian, Pacific, and Atlantic Oceans, respectively. This coherent dipole structure is largely a response of ocean mixed layer to the atmospheric forcing characterized by migration and modulation of the subtropical high-pressures, in which the latent heat flux play a leading role through wind-induced evaporation, although ocean dynamics may also be crucial in forming SST anomalies attached to the continents. Exploratory analyses suggest that this mode is strongly damped by the negative heat flux feedback, with a persistence time about three months and no spectral peak at interannual to decadal time scales. As the subtropical dipole mode is linearly independent of ENSO and SAM, whether it represents an additional source of climate predictability should be further studied. Citation: Wang, F. (2010), Subtropical dipole mode in the Southern Hemisphere: A global view, Geophys. Res. Lett., 37, L10702, doi: 10.1029/2010GL042750.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We used fifteen years (1993-2007) of altimetric data, combined from different missions (ERS-1/2, TOPEX/Poseidon, Jason-1, and Envisat), to analyze the variability of the eddy kinetic energy (EKE) in the South China Sea (SCS). We found that the EKE ranged from 64 cm(2)/s(2) to 1 390 cm(2)/s(2) with a mean value of 314 cm(2)/s(2). The highest EKE center was observed to the east of Vietnam (with a mean value of 509 cm(2)/s(2)) and the second highest EKE region was located to the southwest of Taiwan Island (with a mean value of 319 cm(2)/s(2)). We also found that the EKE structure is the consequence of the superposition of different variability components. First, interannual variability is important in the SCS. Spectral analysis of the EKE interannual signal (IA-EKE) shows that the main periodicities of the IA-EKE to the east of Vietnam, to the southwest of Taiwan Island, and in the SCS are 3.75, 1.87, and 3.75 years, respectively. It is to the south of Taiwan Island that the IA-EKE signal has the most obvious impact on EKE variability. In addition, the IA-EKE exhibit different trends in different regions. An obvious positive trend is observed along the east coast of Vietnam, while a negative trend is found to the southwest of Taiwan Island and in the east basin of Vietnam. Correlation analysis shows that the IA-EKE has an obvious negative correlation with the SSTA in Nio3 (5A degrees S-5A degrees N, 90A degrees W-150A degrees W). El Nio-Southern Oscillation (ENSO) affects the IA-EKE variability in the SCS through an atmospheric bridge-wind stress curl over the SCS. Second, the seasonal cycle is the most obvious timescale affecting EKE variability. The locations of the most remarkable EKE seasonal variabilities in the SCS are to the east of Vietnam, to the southwest of Taiwan, and to the west of Philippines. To the east of Vietnam, the seasonal cycle is the dominant mechanism controlling EKE variability, which is attributed primarily to the annual cycle there of wind stress curl. In this area, the maximum EKE is observed in autumn. To the southwest of Taiwan Island, the EKE is enlarged by the stronger SCS circulation, which is caused by the intrusion branch from the Kuroshio in winter. Finally, intra-annual and mesoscale variability, although less important than the former, cannot be neglected. The most obvious intra-annual and mesoscale variability, which may be the result of baroclinic instability of the background flow, are observed to the southwest of Taiwan Island. Sporadic events can have an important effect on EKE variability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

On the basis of data of drifting bottles' tracks and the current measured in anchored stations, as well as temperature and salinity observed in cruise investigations and coastal stations, ADCP current data and AVHRR surface sea temperature (SST) data on the western coast of Guangdong, synthetic results of analysis showed that the coastal currents in the west of the mouth of the Zhujiang River were mainly westward in summer, which constituted the north branch of cyclonic gyre in the east of the Qiongzhou Straits. Part of its water flowed westward into the Beibu Gulf through the Qiongzhou Straits. The coastal current pattern was not identical with the traditional current system which flowed westward in the Qiongzhou Straits in winter and eastward in summer. The summertime's coastal current was always westward, maybe temporarily turning northeast only when the southwest wind was strong. The important characteristics of coastal current on the western coast of Guangdong, in the Qiongzhou Straits and in the north of the Beibu Gulf were analyzed and their mechanisms also were explained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two deep-sea moorings were deployed respectively in the east area and the west area of Chinese Pioneer Area (CPA) in the tropic east Pacific to monitor the regional deep-sea dynamics below 600 meters above bottom (mab) from July 1997 to Oct. 1999. Results of statistics, spectral estimate and correlation analysis of the low-passed velocity data show that time scales of low-frequency components of the near-bottom currents are 25similar to120 days, in which 51-day period dominates the lower band of the frequency domain. Topographic features have obvious effect on low-frequency currents below 50 mab; modulations of the bottom-intensified sheared mean flow to the low-frequency currents are the dynamic mechanism of the frequency shift that occurs in both the east-area and the west-area.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gridded sound speed data were calculated using Del Grosso's formulation from the temperature and salinity data at the PN section in the East China Sea covering 92 cruises between February 1978 and October 2000. The vertical gradients of sound speed are mainly related to the seasonal variations, and the strong horizontal gradients are mainly related to the Kuroshio and the upwelling. The standard deviations show that great variations of sound speed exist in the upper layer and in the slope zone. Empirical orthogonal function analysis shows that contributions of surface heating and the Kuroshio to sound speed variance are almost equivalent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The economic loss caused by the storm surge disasters is much higher than that caused by any other marine disaster in China, the loss from the severe storm surge disaster being the highest. Statistics show that there were 62 typhoon landings over the east-southeast coast of China since 1990, three of which, occurring in 1992, 1994 and 1997, respectively, caused the most severe damage. The direct economic losses due to these events are 9.3, 17.0 and 30 billion yuan (RMB, or about 1.7, 2.6 and 3.8 billion USD, respectively), which is much greater than the loss of 5.5 billion yuan (RMB) on an average every year during the 1989-1991 period. This paper makes a comparative analysis of the damage caused by the three events and presents an overview of progress of precautions against storm surge disaster in China. The suggested counter measures to mitigate the loss from the severe storm surge disasters in China is as follows: (1) Raise the whole society awareness of precaution against severe storm surge disaster; (2) Work out a new plan for building sea walls; (3) Improve and perfect the available warning and disaster relief command system; (4) Develop the insurance service in order to promptly mitigate the loss caused by severe storm surge disaster event.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The principal tidal constituents M-2, S-2, K-1 and O-1 in the South China Sea, Gulf of Tonkin and Gulf of Thailand are simulated simultaneously using the numerical scheme of Kwok et al. (1995 Proceedings of the 1st Asian Computational Fluid Dynamics Conference, pp. 16-19). The average differences between the computed and observed harmonic constants are mostly within 5 cm and 10 degrees for amplitudes and phase-lags, respectively. The simulated tidal regimes in the present model are believed to be more accurate than the previous numerical results. Our studies confirm that a clockwise rotating M-2 amphidromic system lies in the southeast of the Gulf of Thailand and an S-2 amphidromic system at the near-shore area of the northeast South China Sea. The linear tidal energy equation developed by Garrett (1975 Deep-Sea Research 22, 23-35) is generalized to the nonlinear case. Based on the numerical results, the energy budgets in the South China Sea and its subareas, namely the Taiwan Strait, the Gulf of Tonkin, the Gulf of Thailand and the remaining area are investigated. The tidal motion in the Taiwan Strait is maintained mainly by the energy fluxes from the East China Sea for both semidiurnal and diurnal species and partially from the Luzon Strait for semidiurnal species. For the other parts of the South China Sea, the tidal motion is mainly maintained by the energy fluxes through the Luzon Strait. The energy inputs from the tide-generating force are negative for semidiurnal species and positive for diurnal species. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on the Estuarine, Coastal and Ocean Modeling System with Sediments (ECOMSED) model, a 3-D hydrodynamic-transport numerical model was established for the offshore area near the Yangtze Estuary in the East China Sea. The hydrodynamic module was driven by tide and wind. Sediment module included sediment resuspension, transport and deposition of cohesive and non-cohesive sediment. The settling of cohesive sediment in the water column was modeled as a function of aggregation (flocculation) and deposition. The numerical results were compared with observation data for August, 2006. It shows that the sediment concentration reduces gradually from the seashore to the offshore area. Numerical results of concentration time series in the observation stations show two peaks and two valleys, according with the observation data. It is mainly affected by tidal current. The suspended sediment concentration is related to the tidal current during a tidal cycle, and the maximum concentration appears 1 h-4 h after the current maximum velocity has reached.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.