793 resultados para Textile fibers
Resumo:
We present comprehensive design rules to optimize the process of spectral compression arising from nonlinear pulse propagation in an optical fiber. Extensive numerical simulations are used to predict the performance characteristics of the process as well as to identify the optimal operational conditions within the space of system parameters. It is shown that the group velocity dispersion of the fiber is not detrimental and, in fact, helps achieve optimum compression. We also demonstrate that near-transform-limited rectangular and parabolic pulses can be generated in the region of optimum compression.
Resumo:
We demonstrate a unique temperature-dependent characteristic of the selectively liquid-crystal-filled photonic crystal fiber, which is realized by a selectively infiltrating liquid crystal into a single air hole located at the second ring near the core of the PCF. Three-resonance dips are observed in the transmission spectrum. Theoretical and experimental investigations reveal that the three-resonance dips all result from the coupling between the LP01 core mode and the rod modes, i.e., LP03 and LP51. Then, we find that the dip shift induced by temperature shows good agreements with the thermo-optic performance of the LC employed. Furthermore, the dips shift greatly with changes in temperature, providing a method to achieve temperature measurement in such a compact structure.
Resumo:
Nonlinear distortion in few-mode fibers for intermediate coupling is studied for the first time. Coupling strengths beyond -20 dB/100m give suppression of nonlinear distortion below the isolated mode without mode coupling.
Resumo:
CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.
Resumo:
We inscribe FBGs in all cores of four core fiber simultaneously and investigate their thermal, strain and bending (both direction and magnitude) responses. The influence of fiber core distance on bending sensitivity is also discussed. © 2015 OSA.
Resumo:
The multicore fiber (MCF) is a physical system of high practical importance. In addition to standard exploitation, MCFs may support discrete vortices that carry orbital angular momentum suitable for spatial-division multiplexing in high-capacity fiber-optic communication systems. These discrete vortices may also be attractive for high-power laser applications. We present the conditions of existence, stability, and coherent propagation of such optical vortices for two practical MCF designs. Through optimization, we found stable discrete vortices that were capable of transferring high coherent power through the MCF.
Resumo:
We measure the radial profile of the photoelastic coefficient C(r) in single-mode polymer optical fibers (POFs), and we determine the evolution of C(r) after annealing the fibers at temperatures from 40°C to 80°C. We demonstrate that C(r) in the fibers drawn from a preform without specific thermal pre-treatment changes and converges to values between 1.2 and 1.6×10-12 Pa-1 following annealing at 80°C. The annealed fibers display a smoothened radial profile of C(r) and a lowered residual birefringence. In contrast, the mean value of C(r) of the fiber drawn from a preform that has been pre-annealed remains constant after our annealing process and is significantly higher, i.e., 4×10-12 Pa-1. The annealing process decreases the residual birefringence to a lower extent as well. These measurements indicate the impact of annealing on the thermal stability of the photoelastic coefficient of POFs, which is an essential characteristic in view of developing POF-based thermomechanical sensors.
Resumo:
In this work evaluate the technical characteristics of the fibers grown in settlements Guamaré, colored cotton seeds were donated existing in the Germplasm Bank of Embrapa Cotton. We sought through the breeding program, raising the resistance, fineness, length and uniformity of cotton fibers, as well as stabilize the staining of fibers in the BRS Topaz, BRS Brown and BRS Green shades and raise their productivity in the field. First, the individual selections to test progeny seeds, and thereafter the hybridization method followed by family selection to obtain variations in the color tones were performed. The BRS Topaz, BRS Brown and BRS Green varieties were produced, analyzed and compared with existing cottons in the region which is the White cotton. The properties amount of impurities and neps, length, length uniformity, short fiber content, fineness and tensile strength of the fibers were sized in Classifiber, NATI, Pressley and Micronaire devices. 10 trials each with 10 tests for all four fiber types were carried out. The White and Topaz fibers showed greater length (32-34mm) and greater resistance (7.94 lb/mg and 7.97 lb/mg respectively) and showed finesse with lower micronaire index 3,71μg/inch and 3, 73μg/inch and a low rate of short fibers. The results were very promising for the use of genetically improved cotton in the manufacturing of fabric and yarn in the textile industry. The fibers were brown colored cotton used in the manufacture of a composite fiber with thermoplastic resin
Resumo:
Currently, there is a great search for materials derived from renewable sources. The vegetable fibers as reinforcement for polymer matrixes, has been used as an alternative to replace synthetic fibres, being biodegradable and of low cost. The present work aims to develop a composite material with epoxy resin reinforced with curauá fibre with the addition of alumina trihydrate (aluminum hydroxide, Al(OH)3) as a flame retardant, which was used in proportions of 10 %, 20% and 30% of the total volume of the composite. The curauá fibers have gone through a cleaning process with an alkaline bath of sodium hydroxide (NaOH ), parallelized by hand and cut carding according to the default length . They were molded composites with fibers 30cm. Composites were molded in a Lossy Mold with unidirectional fibres in the proportion of 20% of the total volume of the composite. The composites were prepared in the Chemical Processing Laboratory of the Textile Engineering Department at UFRN. To measure the performance of the material, tests for the resistance to traction and flexion were carried out. with samples that were later analyzed in the Electronic Microscopy Apparatus (SEM ). The composites showed good mechanical properties by the addition of flame retardant and in some cases, leaving the composite more vulnerable to breakage. These mechanical results were analyzed by chi-square statistical test at the 5% significance level to check for possible differences between the composite groups. Flammability testing was conducted based on the standard Underwriters Laboratory 94 and the material showed a satisfactory result taking their average burn rate (mm / min) decreasing with increasing addition of the flame retardant composite.
Resumo:
This paper is based on the undergraduate dissertation of Lindsey Stirling, which was supervised by Karen Milek, and which won the Society of Medieval Archaeology's John Hurst Memorial Dissertation Prize Acknowledgements This research would not have been possible without the assistance of Dr Martin Goldberg at the National Museum of Scotland, Lynda Aiano at Tankerness House Museum, Orkney, and Beverley Ballin Smith. The authors also wish to thank the two anonymous reviewers who provided valuable comments on earlier versions of this paper.
Resumo:
This paper is based on the undergraduate dissertation of Lindsey Stirling, which was supervised by Karen Milek, and which won the Society of Medieval Archaeology's John Hurst Memorial Dissertation Prize Acknowledgements This research would not have been possible without the assistance of Dr Martin Goldberg at the National Museum of Scotland, Lynda Aiano at Tankerness House Museum, Orkney, and Beverley Ballin Smith. The authors also wish to thank the two anonymous reviewers who provided valuable comments on earlier versions of this paper.
Resumo:
We have systematically measured the differential stress-optic coefficient, ΔC, and Young's modulus, E, in a number of PMMA fibers drawn with different stress, ranging from 2 up to 27 MPa. Effect of temperature annealing on those parameters was also investigated. ΔC was determined in transverse illumination by measuring the dependence of birefringence on additional axial stress applied to the fiber. Our results show that ΔC in PMMA fibers has a negative sign and ranges from -4.5 to -1.5×10-12 Pa -1 depending on the drawing stress. Increase of the drawing stress results in greater initial fiber birefringence and lower ΔC. The dependence of ΔC and initial birefringence upon drawing stress is nonlinear and gradually saturates for higher drawing stress. Moreover, we find that ΔC is linearly proportional to initial fiber birefringence and that annealing the fiber has no impact on the slope of this dependence. On the other hand, no clear dependence was observed between the fiber drawing stress and the Young's modulus of the fibers as measured using microscopic digital image correlation with the fibers tensioned using an Instron tension tester. © 2010 SPIE.
Resumo:
This paper examines the current role of women in the clothing and textile industry through oral history of South African union members. I argue that the industry’s particularly exploitative environment is directly related to both gender and globalization, acting together to worsen conditions in factories. Additionally, I argue that the more recent addition of an increasingly consumer-driven industry structure also impacts its abusive environment. Unionization, along with public and private regulation, have the potential to be catalysts for change in the industry. To be most effective, these organizations need to take into account both gender and globalization, and recognize the equal impacts both have when making decisions.