987 resultados para Tethered bilayer lipid membranes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract INTRODUCTION: Previous studies have described improvements on lipid parameters when switching from other antiretroviral drugs to tenofovir (TDF) and impairments in lipid profile when discontinuing TDF. [1-3] It is unknown, however, if TDF has an intrinsic lipid-lowering effect or such findings are due to the addition or removal of other offending agents or other reasons. MATERIALS AND METHODS: RESULTS: 46 subjects with a median age of 43 (40-48) years were enrolled in the study: 70% were male, 56% received DRV/r and 44% LPV/r. One subject withdrew the study voluntarily at week 4 and another one interrupted due to diarrhoea at week 24. Treatment with TDF/FTC decreased total, LDL and HDL-cholesterol from 235.9 to 204.9 (p<0.001), 154.7 to 127.6 (p<0.001) and 50.3 to 44.5 mg/dL (p<0.001), respectively. In comparison, total, LDL and HDL-cholesterol levels remained stable during placebo exposure. Week 12 total cholesterol (p<0.001), LDL-cholesterol (p<0.001) and HDL-cholesterol (p=0.011) levels were significantly lower in TDF/FTC versus placebo. Treatment with TDF/FTC reduced the fraction of subjects with abnormal fasting total-cholesterol (≥200 mg/dL) from 86.7% to 56.8% (p=0.001) and LDL-cholesterol (≥130 mg/dL) from 87.8% to 43.9% (p<0.001), which was not observed with placebo. There were no virological failures, and CD4 and triglyceride levels remained stable regardless of exposure. CONCLUSION: Coformulated TDF/FTC has an intrinsic lipid-lowering effect, likely attributable to TDF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hemoglobin and its structures have been described since the 1990s to enhance a variety of biological activities of endotoxins (LPS) in a dose-dependent manner. To investigate the interaction processes in more detail, the system was extended by studying the interactions of newly designed peptides from the γ-chain of human hemoglobin with the adjuvant monophosphoryl lipid A (MPLA), a partial structure of lipid A lacking its 1-phosphate. It was found that some selected Hbg peptides, in particular two synthetic substructures designated Hbg32 and Hbg35, considerably increased the bioactivity of MPLA, which alone was only a weak activator of immune cells. These findings hold true for human mononuclar cells, monocytes and T lymphocytes. To understand the mechanisms of action in more detail, biophysical techniques were applied. These showed a peptide-induced change of the MPLA aggregate structure from multilamellar into a non-lamellar, probably inverted, cubic structure. Concomitantly, the peptides incorporated into the tightly packed MPLA aggregates into smaller units down to monomers. The fragmentation of the aggregates was an endothermic process, differing from a complex formation but rather typical for a catalytic reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polar flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be O-glycosylated with a heterogeneous glycan. Mutants unable to produce WecP or Gne enzymes showed altered motility, and the study of their polar flagellin glycosylation showed that the patterns of glycosylation differed from that observed with wild type polar flagellin. This suggested the involvement of a lipid carrier in glycosylation. A gene coding for an enzyme linking sugar to a lipid carrier was identified in strain AH-3 (WecX) and subsequent mutation abolished completely motility, flagella production by EM, and flagellin glycosylation. This is the first report of a lipid carrier involved in flagella O-glycosylation. A molecular model has been proposed. The results obtained suggested that the N-acetylhexosamines are N-acetylgalactosamines and that the heptasaccharide is completely independent of the O34-antigen lipopolysaccharide. Furthermore, by comparing the mutants with differing degrees of polar flagellin glycosylation, we established their importance in A. hydrophila flagella formation and motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafiltration (UF) is already used in pulp and paper industry and its demand is growing because of the required reduction of raw water intake and the separation of useful compounds from process waters. In the pulp and paper industry membranes might be exposed to extreme conditions and, therefore, it is important that the membrane can withstand them. In this study, extractives, hemicelluloses and lignin type compounds were separated from wood hydrolysate in order to be able to utilise the hemicelluloses in the production of biofuel. The performance of different polymeric membranes at different temperatures was studied. Samples were analysed for total organic compounds (TOC), lignin compounds (UV absorption at 280 nm) and sugar. Turbidity, conductivity and pH were also measured. The degree of fouling of the membranes was monitored by measuring the pure water flux before and comparing it with the pure water flux after the filtration of hydrolysate. According to the results, the retention of turbidity was observed to be higher at lower temperature compared to when the filtrations were operated at high temperature (70 °C). Permeate flux increased with elevated process temperature. There was no detrimental effect of temperature on most of the membranes used. Microdyn-Nadir regenerated cellulose membranes (RC) and GE-Osmonics thin film membranes seemed to be applicable in the chosen process conditions. The Polyethersulphone (NF-PES-10 and UH004P) and polysulphone (MPS-36) membranes used were highly fouled, but they showed high retentions for different compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylmercury is the most hazardous mercury species known. Due to its high stability, lipid solubility, and ionic properties, this compound shows a high ability to cross membranes in living organisms, damaging the central nervous system, mainly the brain, and the effects of chronic poisoning are progressive. In this paper some aspects related to the toxicity and the cases of methylmercury poisoning are described. Other aspects related to the behavior of methylmercury and the environmental factors that influence the transformation of mercury in the water and sediment, with emphasis on the methylation/demethylation reactions and the mercury cycle are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoclasts are cells responsible for bone resorption. These cells undergo extensive membrane re-organization during their polarization for bone resorption and form four distinct membrane domains, namely the ruffled border, the basolateral membrane, the sealing zone and the functional secretory domain. The endocytic/biosynthetic pathway and transcytotic route(s) are important for the resorption process, since the endocytic/biosynthetic pathway brings the specific vesicles to the ruffled border whereas the transcytotic flow is believed to transport the degraded bone matrix away from the resorption lacuna to the functional secretory domain. In the present study, we found a new transcytotic route from the functional secretory domain to the ruffled border, which may compensate membrane loss from the ruffled border during the resorption process. We also found that lipid rafts are essential for the ruffled border-targeted late endosomal pathways. A small GTP-binding protein, Rab7, has earlier been shown to regulate the late steps of the endocytic pathway. In bone-resorbing osteoclasts it is involved in the formation of the ruffled border, which displays several features of late endosomal membranes. Here we discovered a new Rab7-interacting protein, Rac1, which is another small GTP-binding protein and binds to the GTP-form of Rab7 in vitro. We demonstrated further that Rab7 colocalizes with Rac1 at the fusion zone of the ruffled border in bone-resorbing osteoclasts. In other cell types, such as fibroblast-like cells, this colocalization is mainly perinuclear. Because Rac1 is known to control the actin cytoskeleton through its effectors, we suggest that the Rab7-Rac1 interaction may mediate late endosomal transport between microtubules and microfilaments, thus enabling endosomal vesicles to switch tracks from microtubules to microfilaments before their fusion to the ruffled border. We then studied the role of Rab-Rac1 interaction in the slow recycling pathway. We revealed that Rac1 also binds directly to Rab11 and to some other but not all Rab-proteins, suggesting that Rab-Rac1 interaction could be a general regulatory mechanism to direct the intracellular vesicles from microtubule mediated transport to actin filament mediated transport and vice versa. On the basis of our results we thus propose a new hypothesis for these GTPases in the regulation of intracellular membrane flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a method of visualizing the trend of research in the field of ceramic membranes from 1999 to 2006. The presented approach involves identifying problems encountered during research in the field of ceramic membranes. Patents from US patent database and articles from Science Direct(& by ELSEVIER was analyzed for this work. The identification of problems was achieved with software Knowledgist which focuses on the semantic nature of a sentence to generate series of subject action object structures. The identified problems are classified into major research issues. This classification was used for the visualization of the intensity of research. The image produced gives the relation between the number of patents, with time and the major research issues. The identification of the most cited papers which strongly influence the research of the previously identified major issues in the given field was also carried out. The relations between these papers are presented using the metaphor of social network. The final result of this work are two figures, a diagram showing the change in the studied problems a specified period of time and a figure showing the relations between the major papers and groups of the problems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As it is known, a huge part of all commercially available membranes are prepared by immersion precipitation. This way is the primary way to get flat membranes. The advantages of immersion precipitation are: wide field of the polymers, which can be used (polymer must be soluble in a solvent or a solvent mixture) and ease of performing. The literature part of this work deals with phase inversion membrane preparation methods and casting parameters affecting membrane performance. Also some membrane types and materials are discussed. In the experimental part of this work 73 membrane samples were made with different casting parameters (polymer concentration in the casting solution and precipitation time) and tested for the retention and permeability. The results of these experiments are collected and combined into the figures and tables which are presented in this thesis. This work showed and confirmed connection between membrane performance and casting parameters (concentration of polymer in the casting solution and precipitation time).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphotericin B (AB) is the standard drug for invasive fungal infection therapy. It has a broad spectrum of activity and it is the best antifungal available against most yeasts and molds. Its therapeutic use, however, is limited by significant side effects, leading to a low therapeutic index when it is used as the traditional formulation (Fungizone®). Due to self-association, AB can form pores in cholesterol-containing membranes. We propose a triglyceride-rich nanoemulsion as a delivery system for AB in low levels of aggregation to reduce the toxicity against host cells.