899 resultados para Tensile strength testing
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Automotive heat shields are usually composed of two metal sheets enclosing an insulating material with a paper-like texture that contains refractory ceramic particles. This article discusses the results achieved by recycling the scrap automotive insulation that is discarded in landfills, using the same concept as paper recycling. For comparison with the original product, tests of thickness, bulk density, weight loss on ignition, tensile strength, compressibility, and recovery were performed on recycled materials produced in a so-called "manual" process (involving little automation and performed in adapted facilities) without pressing, and pressed once, twice, and four times. Materials recycled in a so-called "industrial" process (in a paper recycling plant) without pressing, and pressed once were also tested. The recycled materials can be considered approved with respect to the main requirement, thermal insulation, since they dissipated the under-hood temperature by more than 300 A degrees C (like the original product). Like the heat insulation tests, the thermogravimetric analysis suggested that the recycled materials showed higher stability than the original product. Thermogravimetric, microscopy, and energy dispersive spectroscopy analyses indicated that the structural and compositional characteristics of the original product were preserved after recycling.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Although ceramics present high compressive strength, they are brittle materials due to their low tensile strength so they have lower capacity to absorb shocks. This study evaluated the fracture toughness of different ceramic systems, which refers to the ability of a friable material to absorb defformation energy. Three ceramic systems were investigated. Ten cylindrical samples (5,0mm x 3,0mm), were obtained from each ceramic material as follows: G1- 10 samples of Vitadur Alpha (Vita-Zahnfabrik); G2- 10 samples of IPS Empress2 (Ivoclar-Vivadent); G3- 10 samples of In-Ceram Alumina (Vita-Zahnfabrik). Fracture toughness values were collected upon indentation tests that were performed under a heavy load. A microhardness tester (Digital Microhardness Tester FM) utilized a 500gf load cell during 10seconds to perform four impressions on each sample. Statistically significant results were observed (ANOVA and Kruskal-Wallis tests). In-Ceram Alumina presented the highest median toughness values (2,96N/m3/2), followed by Vitadur Alpha (2,08N/m3/2) and IPS Empress2 (1,05N/m3/2). It may be concluded that different ceramic systems present distinct fracture toughness values, thus In-Ceram is capable of absorbing superior stress when compared to Vitadur Alpha and IPS Empress2.
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Biomodification of existing hard tissue structures, specifically tooth dentin, is an innovative approach proposed to improve the biomechanical and biochemical properties of tissue for potential preventive or reparative therapies. The objectives of the study were to systematically characterize dentin matrices biomodified by proanthocyanidin-rich grape seed extract (GSE) and glutaraldehyde (GD). Changes to the biochemistry and biomechanical properties were assessed by several assays to investigate the degree of interaction, biodegradation rates, proteoglycan interaction, and effect of collagen fibril orientation and environmental conditions on the tensile properties. The highest degree of agent–dentin interaction was observed with GSE, which exhibited the highest denaturation temperature, regardless of the agent concentration. Biodegradation rates decreased remarkably following biomodification of dentin matrices after 24 h collagenase digestion. A significant decrease in the proteoglycan content of GSE-treated samples was observed using a micro-assay for glycosaminoglycans and histological electron microscopy, while no changes were observed for GD and the control. The tensile strength properties of GD-biomodified dentin matrices were affected by dentin tubule orientation, most likely due to the orientation of the collagen fibrils. Higher and/or increased stability of the tensile properties of GD- and GSE-treated samples were observed following exposure to collagenase and 8 months water storage. Biomodification of dentin matrices using chemical agents not only affects the collagen biochemistry, but also involves interaction with proteoglycans. Tissue biomodifiers interact differently with dentin matrices and may provide the tissue with enhanced preventive and restorative/reparative abilities.
Resumo:
Pós-graduação em Ciência Odontólogica - FOA
Resumo:
This work evaluated the effect of vinasse (residue from sugar cane) in high density polyethylene (HDPE) geomembranes having in mind that it is deposited at temperatures of 80-90˚C on the geomembrane in storage tanks. The objective was to evaluate the resistance of the geomembrane in contact with residue in a total period of 4 months. Physical and mechanical tests, and thermogravimetric analysis (TGA) were used to determine degradation of polymer membranes after chemical immersion. In general, the results obtained show that the vinasse affected the geomembranes significantly in some aspects, for instance, the thickness of the material presented a variation of 7.8%. The average values in both directions at yielding showed a significant loss of tensile strength (34.13%) and strain (23.48%) and an increase in the modulus of elasticity (9.63%). At the rupture the behavior presented the same trend: a loss of 32% for tensile strength and 24.4% for the deformation were observed. Tear strength presented small decrease (4.72%) and puncture resistance a increase of 7.9% after immersion of geomembranes. The TGA tests were not efficient to detect evidence of degradation in samples of geomembranes after exposures, but identified problems in the quality of the supplied material.
Resumo:
In this research the aim was produce and evaluate a plastic composite using recycled polypropylene (PP) and fibers from sugarcane bagasse residues (SC), without the use of additives. This analysis was based on laboratorial tests for physical and mechanical characterization, according to the standards ASTM D256-00, D638-101 and D570-98 were analyzed: water absorption, thickness swelling, impact resistance, tensile strength and its correspondent deformation. For comparison it was elaborated three different compositions: 100% PP; 80% PP+20%SC; 70%PP+30%SC. The results indicate a positive correlation with the content of fiber and water absorption and thickness swelling. In the tension tests, the composites with fibers increase the value of resistance for physical efforts, bringing advantages as durability and integrity of the material, showing a viability of the composites.
Resumo:
In recent years the production of products derived from wood and bamboo are increasing, due to the search for a more rational exploitation of these raw materials. Amongst these products, the particleboards production combine sustainability and rationality in the use of these materials. In this context, this work has the objective to study the application of alternative raw materials in the manufacture of Medium Density Particleboards (MDP), using residues from industrial processimg of coffee and bamboo. MDP had been produced with particles of giganteus bamboo of the Dendrocalamus species and particle of coffee rind in the intermediate layer of the particleboard, bonded with polyurethane resin based on castor oil. The physical and mechanical characterization was carried out accordingly to NBR 14810-3 (2006). The physical properties evaluated were: of water absorption for 2h and 24h; thickness swallowing for 2h and 24h; density, humidity content. The mechanical properties evaluated were: Tensile strength, static bending (MOR and MOE). The results were compared with NBR 14810-2 (2006) and also with the ANSI A208-1 (1993). The physical performance of these particleboards was below the values recommend by the Brazilian norm. Also the mechanical characteristics are not improve, demonstrating that the inclusion of coffee rind did not benefit the physical characteristics and nor the mechanical ones. However it can be used as construction materials for partitions and ceiling panels.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In recent years the production of products derived from wood and bamboo are increasing, due to the search for a more rational exploitation of these raw materials. Amongst these products, the particleboards production combine sustainability and rationality in the use of these materials. In this context, this work has the objective to study the application of alternative raw materials in the manufacture of Medium Density Particleboards (MDP), using residues from industrial processimg of coffee and bamboo. MDP had been produced with particles of giganteus bamboo of the Dendrocalamus species and particle of coffee rind in the intermediate layer of the particleboard, bonded with polyurethane resin based on castor oil. The physical and mechanical characterization was carried out accordingly to NBR 14810-3 (2006). The physical properties evaluated were: of water absorption for 2h and 24h; thickness swallowing for 2h and 24h; density, humidity content. The mechanical properties evaluated were: Tensile strength, static bending (MOR and MOE). The results were compared with NBR 14810-2 (2006) and also with the ANSI A208-1 (1993). The physical performance of these particleboards was below the values recommend by the Brazilian norm. Also the mechanical characteristics are not improve, demonstrating that the inclusion of coffee rind did not benefit the physical characteristics and nor the mechanical ones. However it can be used as construction materials for partitions and ceiling panels.