996 resultados para Temporal Precision
Resumo:
Connectance webs represent the standard data description in food web ecology, but their usefulness is often limited in understanding the patterns and processes within ecosystems. Increasingly, efforts have been made to incorporate additional, biologically meaningful, data into food web descriptions, including the construction of food webs using data describing the body size and abundance of each species. Here, data from a terrestrial forest floor food web, sampled seasonally over a 1-year period, were analysed to investigate (i) how stable the body size abundance and predator prey relationships of an ecosystem are through time and (ii) whether there are system-specific differences in body size abundance and predator prey relationships between ecosystem types.
Resumo:
WASP-13b is a sub-Jupiter mass exoplanet orbiting a G1V type star with a period of 4.35 d.The current uncertainty in its impact parameter (0 < b < 0.46) results in poorly definedstellar and planetary radii. To better constrain the impact parameter, we have obtained highprecisiontransit observations with the rapid imager to search for exoplanets (RISE) instrumentmounted on 2.0-m Liverpool Telescope. We present four new transits which are fitted witha Markov chain Monte Carlo routine to derive accurate system parameters. We found anorbital inclination of 85. ◦ 2 ± 0. ◦ 3 resulting in stellar and planetary radii of 1.56 ± 0.04 Rand 1.39 ± 0.05RJup, respectively. This suggests that the host star has evolved off the mainsequence and is in the hydrogen-shell-burning phase.We also discuss how the limb darkeningaffects the derived system parameters.With a density of 0.17ρJ,WASP-13b joins the group oflow-density planets whose radii are too large to be explained by standard irradiation models.We derive a new ephemeris for the system, T0 = 245 5575.5136 ± 0.0016 (HJD) and P =4.353 011 ± 0.000 013 d. The planet equilibrium temperature (Tequ = 1500 K) and the brighthost star (V = 10.4mag) make it a good candidate for follow-up atmospheric studies.
Resumo:
Levels of genetic relatedness within bat colonies are often unknown, and consequently the reasons for group formation and social organization are unclear. The Leisler's bat (Nyctalus leisleri), like most temperate bat species, forms nursery colonies in summer. We used microsatellite markers to examine identity and to attempt to estimate relatedness among females within a nursery colony, over 2 consecutive years, to ascertain whether females show kinship and natal philopatry, testing the hypothesis that this is the basis of colony formation. Parentage and relatedness of young born within a colony was assessed to investigate mating patterns via male reproductive skew and whether males achieve mating success within their natal colony. While there was evidence for female philopatry, levels of genetic relatedness within colonies were low. This suggests that kinship is not a major determinant in group formation, as roosts also comprise a large number of distant relatives or non-kin. Roost switching and gene flow are likely to be high. Both sexes reproduced in their first year, whereas males appear to be the more dispersive sex. We argue that the physical environment as well as information sharing provided by communal roosting are likely to be important factors for the formation of these large natal colonies in N. leisleri and possibly other lineages of bats. © 2012 The Author.
Resumo:
Short pulses of 100 ps FWHM duration at 1.06 mu m wavelength are used as the pump source for driving the J = 0-1, 19.6 nm, Ne-like germanium X-ray laser. Different combinations of short pulses are investigated and quantitatively compared. Configurations investigated include a single pulse, double pulses at 400 ps and 800 ps separation, single pulses with prepulses and double pulses with prepulses. Data are presented in the form of integrated energy measurements, and supported by modelling. The most efficient short pulse configurations are shown to be orders of magnitude more effective than pumping with nanosecond duration pulses. (C) 1997 Elsevier Science B.V.
Resumo:
The finite element method plays an extremely important role in forging process design as it provides a valid means to quantify forging errors and thereby govern die shape modification to improve the dimensional accuracy of the component. However, this dependency on process simulation could raise significant problems and present a major drawback if the finite element simulation results were inaccurate. This paper presents a novel approach to assess the dimensional accuracy and shape quality of aeroengine blades formed from finite element hot-forging simulation. The proposed virtual inspection system uses conventional algorithms adopted by modern coordinate measurement processes as well as the latest free-form surface evaluation techniques to provide a robust framework for virtual forging error assessment. Established techniques for the physical registration of real components have been adapted to localise virtual models in relation to a nominal Design Coordinate System. Blades are then automatically analysed using a series of intelligent routines to generate measurement data and compute dimensional errors. The results of a comparison study indicate that the virtual inspection results and actual coordinate measurement data are highly comparable, validating the approach as an effective and accurate means to quantify forging error in a virtual environment. Consequently, this provides adequate justification for the implementation of the virtual inspection system in the virtual process design, modelling and validation of forged aeroengine blades in industry.
Resumo:
The generation of high harmonics from solid-density plasmas promises the production of attosecond (as) pulses orders of magnitude brighter than those from conventional rare gas sources. However, while spatial and spectral emission of surface harmonics has been characterized in detail in many experiments proof that the harmonic emission is indeed phase locked and thus bunched in as-pulses has only been delivered recently (Nomura et al 2009 Nat. Phys. 5 124-8). In this paper, we discuss the experimental setup of our extreme ultraviolet (XUV) autocorrelation (AC) device in detail and show the first two-photon ionization and subsequent AC experiment using solid target harmonics. In addition, we describe a simple analytical model to estimate the chirp between the individual generated harmonics in the sub- and mildly relativistic regime and validate it using particle-in-cell (PIC) simulations. Finally, we propose several methods applicable to surface harmonics to extend the temporal pulse characterization to higher photon energies and for the reconstruction of the spectral phase between the individual harmonics. The experiments described in this paper prove unambiguously that harmonic emission from solid-density plasmas indeed occurs as a train of sub- femtosecond pulses and thus fulfills the most important property for a next-generation as-pulse source of unprecedented brightness.