785 resultados para Task constraints, Representative design, Decision-making behaviour, Team games, Rugby union


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data Envelopment Analysis (DEA) is recognized as a modern approach to the assessment of performance of a set of homogeneous Decision Making Units (DMUs) that use similar sources to produce similar outputs. While DEA commonly is used with precise data, recently several approaches are introduced for evaluating DMUs with uncertain data. In the existing approaches many information on uncertainties are lost. For example in the defuzzification, the a-level and fuzzy ranking approaches are not considered. In the tolerance approach the inequality or equality signs are fuzzified but the fuzzy coefficients (inputs and outputs) are not treated directly. The purpose of this paper is to develop a new model to evaluate DMUs under uncertainty using Fuzzy DEA and to include a-level to the model under fuzzy environment. An example is given to illustrate this method in details.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the use of a Model developed by Aston Business School to record the work load of its academic staff. By developing a database to register annual activity in all areas of teaching, administration and research the School has created a flexible tool which can be used for facilitating both day-to-day managerial and longer term strategic decisions. This paper gives a brief outline of the Model and discusses the factors which were taken into account when setting it up. Particular attention is paid to the uses made of the Model and the problems encountered in developing it. The paper concludes with an appraisal of the Model’s impact and of additional developments which are currently being considered. Aston Business School has had a Load Model in some form for many years. The Model has, however, been refined over the past five years, so that it has developed into a form which can be used for a far greater number of purposes within the School. The Model is coordinated by a small group of academic and administrative staff, chaired by the Head of the School. This group is responsible for the annual cycle of collecting and inputting data, validating returns, carrying out analyses of the raw data, and presenting the mater ial to different sections of the School. The authors of this paper are members of this steer ing group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artifact selection decisions typically involve the selection of one from a number of possible/candidate options (decision alternatives). In order to support such decisions, it is important to identify and recognize relevant key issues of problem solving and decision making (Albers, 1996; Harris, 1998a, 1998b; Jacobs & Holten, 1995; Loch & Conger, 1996; Rumble, 1991; Sauter, 1999; Simon, 1986). Sauter classifies four problem solving/decision making styles: (1) left-brain style, (2) right-brain style, (3) accommodating, and (4) integrated (Sauter, 1999). The left-brain style employs analytical and quantitative techniques and relies on rational and logical reasoning. In an effort to achieve predictability and minimize uncertainty, problems are explicitly defined, solution methods are determined, orderly information searches are conducted, and analysis is increasingly refined. Left-brain style decision making works best when it is possible to predict/control, measure, and quantify all relevant variables, and when information is complete. In direct contrast, right-brain style decision making is based on intuitive techniques—it places more emphasis on feelings than facts. Accommodating decision makers use their non-dominant style when they realize that it will work best in a given situation. Lastly, integrated style decision makers are able to combine the left- and right-brain styles—they use analytical processes to filter information and intuition to contend with uncertainty and complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intuition can produce effective strategic decisions because of its speed and ability to solve less-structured problems. Despite this, there are only a very small number of empirical studies that have examined intuition in the strategic decision-making process. We examine the relationship between the use of intuition in the strategic decision-making process, and strategic decision effectiveness. We propose that the expertise of the decision-maker, environmental dynamism and the characteristics of the strategic decision itself moderate the relationship between the use of intuition in the strategic decision making process, and strategic decision effectiveness. We make a significant theoretical contribution by integrating the management and social-psychology literatures in order to identify the variables that affect the relationship between the use of intuition in the strategic decision-making process, and strategic decision effectiveness. This article builds upon existing empirical research that has examined intuition in the strategic decision-making process, and reconciles some of the confounding results that have emerged. The paper presents a conceptual model and research propositions, which if empirically examined, would make a significant contribution to knowledge in the strategic decision-making domain of literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioenergy schemes are multi-faceted and complex by nature, with many available raw material supplies and technical options and a diverse set of stakeholders holding a raft of conflicting opinions. To develop and operate a successful scheme there are many requirements that should be considered and satisfied. This paper provides a review of those academic works attempting to deal with problems arising within the bioenergy sector using multi-criteria decision-making (MCDM) methods. These methods are particularly suitable to bioenergy given its multi-faceted nature but could be equally relevant to other energy conversion technologies. Related articles appearing in the international journals from 2000 to 2010 are gathered and analysed so that the following two questions can be answered. (i) Which methods are the most popular? (ii) Which problems attract the most attention? The review finds that optimisation methods are most popular with methods choosing between few alternatives being used in 44% of reviewed papers and methods choosing between many alternatives being used in 28%. The most popular application area was to technology selection with 27% of reviewed papers followed by policy decisions with 18%. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strategic decision making (SDM) in a small business is an informal, highly personalised cognitive process which is emergent in nature. SDM determines the extent to which decision makers generate innovative decision-making options, and is therefore critical in order for small businesses to achieve strategic flexibility to enable strategic adaptation to turbulent environments. By examining SDM in small businesses, this research has the potential to address a major criticism of the extant literature in that it has been pre-occupied with measuring the formality of strategic planning and has neglected the informal, highly personalised and cognitive nature of strategic decision making in a small businesses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intuition is a vitally important concept in strategic decision making research because it enables decision-makers to rapidly detect patterns in dynamic environments in order to cope with the time-pressured, ill-structured and non-routine nature of strategic decision-making. Despite a growing body of conceptual literature emphasising the importance of intuition in strategic decision-making; there has been very little development of theory explaining the contextual factors that cause intuition to be used in the strategic decision-making process. This paper demonstrates that by integrating different contextual variables a clear understanding of the influences on the use of intuition in strategic decision-making can be developed. This article develops an integrative theoretical model together with testable research propositions, which if empirically examined, would make a substantial contribution to knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines UK and US primary care doctors' decision-making about older (aged 75 years) and midlife (aged 55 years) patients presenting with coronary heart disease (CHD). Using an analytic approach based on conceptualising clinical decision-making as a classification process, it explores the ways in which doctors' cognitive processes contribute to ageism in health-care at three key decision points during consultations. In each country, 56 randomly selected doctors were shown videotaped vignettes of actors portraying patients with CHD. The patients' ages (55 or 75 years), gender, ethnicity and social class were varied systematically. During the interviews, doctors gave free-recall accounts of their decision-making. The results do not establish that there was substantial ageism in the doctors' decisions, but rather suggest that diagnostic processes pay insufficient attention to the significance of older patients' age and its association with the likelihood of co-morbidity and atypical disease presentations. The doctors also demonstrated more limited use of 'knowledge structures' when diagnosing older than midlife patients. With respect to interventions, differences in the national health-care systems rather than patients' age accounted for the differences in doctors' decisions. US doctors were significantly more concerned about the potential for adverse outcomes if important diagnoses were untreated, while UK general practitioners cited greater difficulty in accessing diagnostic tests.