938 resultados para Tandem Mass Spectrometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62 %), followed by nitrate (15 %), sulphate (9 %) and ammonium (9 %), and chloride (5 %). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18 %, "biomass burning" organic aerosol (BBOA) comprised 23 %, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21 %, and finally a species type characterized by primary m/z peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18 %. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62 %), followed by nitrate (15 %), sulphate (9 %) and ammonium (9 %), and chloride (5 %). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18 %, "biomass burning" organic aerosol (BBOA) comprised 23 %, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21 %, and finally a species type characterized by primary m/z peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18 %. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed for the measurement of the size resolved chemical composition of single particles at a site in Cork Harbour, Ireland for three weeks in August 2008. The ATOFMS was co-located with a suite of semi-continuous instrumentation for the measurement of particle number, elemental carbon (EC), organic carbon (OC), sulfate and particulate matter smaller than 2.5 μm in diameter (PM2.5). The temporality of the ambient ATOFMS particle classes was subsequently used in conjunction with the semi-continuous measurements to apportion PM2.5 mass using positive matrix factorisation. The synergy of the single particle classification procedure and positive matrix factorisation allowed for the identification of six factors, corresponding to vehicular traffic, marine, long-range transport, various combustion, domestic solid fuel combustion and shipping traffic with estimated contributions to the measured PM2.5 mass of 23%, 14%, 13%, 11%, 5% and 1.5% respectively. Shipping traffic was found to contribute 18% of the measured particle number (20–600 nm mobility diameter), and thus may have important implications for human health considering the size and composition of ship exhaust particles. The positive matrix factorisation procedure enabled a more refined interpretation of the single particle results by providing source contributions to PM2.5 mass, while the single particle data enabled the identification of additional factors not possible with typical semi-continuous measurements, including local shipping traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.

The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.

In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.

I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.

Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composition of atmospheric particles is an important factor in determining their impact on climate and health. In this study, an aerosol time-of-flight mass spectrometer (ATOFMS) was used to measure the chemical composition of ambient single particles at two contrasting locations – an industrial site in Dunkirk, France and a regional background site in Corsica. The ATOFMS data were combined with meteorological information and other particle measurements to determine the various sources of the particles observed at the sites. The particle classes detected in Dunkirk included carbonaceous species from fossil fuel combustion and biomass burning, metal-containing types from local industries and seasalt. Highest particle number concentrations and mass concentrations of PM2.5, black carbon, organics, nitrate, ammonium and several metallic species (Fe, Mn, Pb, Zn) were found during periods heavily influenced by local industry. Particles from a ferromanganese alloy manufacturing facility were identified by comparing ambient ATOFMS data with single particle mass spectra from industrial chimney filters and ores. Particles from a steelworks were identified based on comparison of the ambient data with previous studies. Based on these comparisons, the steelworks was identified as the dominant emitter of Fe-rich particles, while the ferromanganese alloy facility emitted Mn-rich particles. In Corsica, regional transport of carbonaceous particles from biomass burning and fossil fuel combustion was identified as the major source of particles in the Mediterranean background aerosol. Throughout the campaign the site was influenced by air masses altering the composition of particles detected. During North Atlantic air masses the site was heavily influenced by fresh sea salt. Regional stagnation was the most common type of air mass regime throughout the campaign and resulted in the accumulation of carbonaceous particles during certain periods. Mass concentrations were estimated for ATOFMS particle classes, and good agreement was found between the major carbonaceous classes and other quantitative measurements. Overall the results of this work serve to highlight the excellent ability of the ATOFMS technique in providing source-specific composition and mixing state information on atmospheric particles at high time resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic–biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for elemental analysis of biological matrices such as bone, teeth, and plant matter for sourcing purposes has emerged within the forensic and geochemical laboratories. Trace elemental analyses for the comparison of aterials such as glass by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS has been shown to offer a high degree of discrimination between different manufacturing sources. Unit resolution ICP-MS instruments may suffer from some polyatomic interferences including 40Ar16O+, 40Ar16O1H+, and 40Ca16O+ that affect iron measurement at trace levels. Iron is an important element in the analysis of glass and also of interest for the analysis of several biological matrices. A comparison of the nalytical performance of two different ICP-MS systems for iron analysis in glass for determining the method detection limits (MDLs), accuracy, and precision of the measurement is presented. Acid digestion and laser ablation methods are also compared. Iron polyatomic interferences were reduced or resolved by using dynamic reaction cell and high resolution ICP-MS. MDLs as low as 0.03 ìg g-1 and 0.14 ìg g-1 for laser ablation and solution based analyses respectively were achieved. The use of helium as a carrier gas demonstrated improvement in the detection limits of both iron isotopes (56Fe and 57Fe) in medium resolution for the HR-ICP-MS and with a dynamic reaction cell (DRC) coupled to a quadrupole ICP-MS system. The development and application of robust analytical methods for the quantification of trace elements in biological matrices has lead to a better understanding of the potential utility of these measurements in forensic chemical analyses. Standard reference materials (SRMs) were used in the development of an analytical method using HR-ICP-MS and LA-HR-ICP-MS that was subsequently applied on the analysis of real samples. Bone, teeth and ashed marijuana samples were analyzed with the developed method. Elemental analysis of bone samples from 12 different individuals provided discrimination between individuals, when femur and humerus bones were considered separately. Discrimination of 14 teeth samples based on elemental composition was achieved with the exception of one case where samples from the same individual were not associated with each other. The discrimination of 49 different ashed plant (cannabis)samples was achieved using the developed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of harmful algal blooms (HAB) is a growing concern in aquatic environments. Among HAB organisms, cyanobacteria are of special concern because they have been reported worldwide to cause environmental and human health problem through contamination of drinking water. Although several analytical approaches have been applied to monitoring cyanobacteria toxins, conventional methods are costly and time-consuming so that analyses take weeks for field sampling and subsequent lab analysis. Capillary electrophoresis (CE) becomes a particularly suitable analytical separation method that can couple very small samples and rapid separations to a wide range of selective and sensitive detection techniques. This paper demonstrates a method for rapid separation and identification of four microcystin variants commonly found in aquatic environments. CE coupled to UV and electrospray ionization time-of-flight mass spectrometry (ESI-TOF) procedures were developed. All four analytes were separated within 6 minutes. The ESI-TOF experiment provides accurate molecular information, which further identifies analytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The necessity of elemental analysis techniques to solve forensic problems continues to expand as the samples collected from crime scenes grow in complexity. Laser ablation ICP-MS (LA-ICP-MS) has been shown to provide a high degree of discrimination between samples that originate from different sources. In the first part of this research, two laser ablation ICP-MS systems were compared, one using a nanosecond laser and another a femtosecond laser source for the forensic analysis of glass. The results showed that femtosecond LA-ICP-MS did not provide significant improvements in terms of accuracy, precision and discrimination, however femtosecond LA-ICP-MS did provide lower detection limits. In addition, it was determined that even for femtosecond LA-ICP-MS an internal standard should be utilized to obtain accurate analytical results for glass analyses. In the second part, a method using laser induced breakdown spectroscopy (LIBS) for the forensic analysis of glass was shown to provide excellent discrimination for a glass set consisting of 41 automotive fragments. The discrimination power was compared to two of the leading elemental analysis techniques, µXRF and LA-ICP-MS, and the results were similar; all methods generated >99% discrimination and the pairs found indistinguishable were similar. An extensive data analysis approach for LIBS glass analyses was developed to minimize Type I and II errors en route to a recommendation of 10 ratios to be used for glass comparisons. Finally, a LA-ICP-MS method for the qualitative analysis and discrimination of gel ink sources was developed and tested for a set of ink samples. In the first discrimination study, qualitative analysis was used to obtain 95.6% discrimination for a blind study consisting of 45 black gel ink samples provided by the United States Secret Service. A 0.4% false exclusion (Type I) error rate and a 3.9% false inclusion (Type II) error rate was obtained for this discrimination study. In the second discrimination study, 99% discrimination power was achieved for a black gel ink pen set consisting of 24 self collected samples. The two pairs found to be indistinguishable came from the same source of origin (the same manufacturer and type of pen purchased in different locations). It was also found that gel ink from the same pen, regardless of the age, was indistinguishable as were gel ink pens (four pens) originating from the same pack.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adulteration of food has received substantial amounts of media attention in the last few years, with events such as the European horsemeat scandal in 2013 sending shockwaves through society. Almost all cases are motivated by the pursuit of profits and are often aided by long and complex supply chains. In the past few years, the rapid growth of ambient mass spectrometry (AMS) has been remarkable, with over thirty different ambient ionisation techniques available. Due to the increasing concerns of the food industry and regulators worldwide, AMS is now being utilised to investigate whether or not it can generate results which are faster yet comparable to those of conventional techniques. This article reviews some aspects of the adulteration of food and its impact on the economy and the public's health, the background to ambient mass spectrometry and the studies that have been undertaken to detect food adulteration using this technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La spectrométrie de masse mesure la masse des ions selon leur rapport masse sur charge. Cette technique est employée dans plusieurs domaines et peut analyser des mélanges complexes. L’imagerie par spectrométrie de masse (Imaging Mass Spectrometry en anglais, IMS), une branche de la spectrométrie de masse, permet l’analyse des ions sur une surface, tout en conservant l’organisation spatiale des ions détectés. Jusqu’à présent, les échantillons les plus étudiés en IMS sont des sections tissulaires végétales ou animales. Parmi les molécules couramment analysées par l’IMS, les lipides ont suscité beaucoup d'intérêt. Les lipides sont impliqués dans les maladies et le fonctionnement normal des cellules; ils forment la membrane cellulaire et ont plusieurs rôles, comme celui de réguler des événements cellulaires. Considérant l’implication des lipides dans la biologie et la capacité du MALDI IMS à les analyser, nous avons développé des stratégies analytiques pour la manipulation des échantillons et l’analyse de larges ensembles de données lipidiques. La dégradation des lipides est très importante dans l’industrie alimentaire. De la même façon, les lipides des sections tissulaires risquent de se dégrader. Leurs produits de dégradation peuvent donc introduire des artefacts dans l’analyse IMS ainsi que la perte d’espèces lipidiques pouvant nuire à la précision des mesures d’abondance. Puisque les lipides oxydés sont aussi des médiateurs importants dans le développement de plusieurs maladies, leur réelle préservation devient donc critique. Dans les études multi-institutionnelles où les échantillons sont souvent transportés d’un emplacement à l’autre, des protocoles adaptés et validés, et des mesures de dégradation sont nécessaires. Nos principaux résultats sont les suivants : un accroissement en fonction du temps des phospholipides oxydés et des lysophospholipides dans des conditions ambiantes, une diminution de la présence des lipides ayant des acides gras insaturés et un effet inhibitoire sur ses phénomènes de la conservation des sections au froid sous N2. A température et atmosphère ambiantes, les phospholipides sont oxydés sur une échelle de temps typique d’une préparation IMS normale (~30 minutes). Les phospholipides sont aussi décomposés en lysophospholipides sur une échelle de temps de plusieurs jours. La validation d’une méthode de manipulation d’échantillon est d’autant plus importante lorsqu’il s’agit d’analyser un plus grand nombre d’échantillons. L’athérosclérose est une maladie cardiovasculaire induite par l’accumulation de matériel cellulaire sur la paroi artérielle. Puisque l’athérosclérose est un phénomène en trois dimension (3D), l'IMS 3D en série devient donc utile, d'une part, car elle a la capacité à localiser les molécules sur la longueur totale d’une plaque athéromateuse et, d'autre part, car elle peut identifier des mécanismes moléculaires du développement ou de la rupture des plaques. l'IMS 3D en série fait face à certains défis spécifiques, dont beaucoup se rapportent simplement à la reconstruction en 3D et à l’interprétation de la reconstruction moléculaire en temps réel. En tenant compte de ces objectifs et en utilisant l’IMS des lipides pour l’étude des plaques d’athérosclérose d’une carotide humaine et d’un modèle murin d’athérosclérose, nous avons élaboré des méthodes «open-source» pour la reconstruction des données de l’IMS en 3D. Notre méthodologie fournit un moyen d’obtenir des visualisations de haute qualité et démontre une stratégie pour l’interprétation rapide des données de l’IMS 3D par la segmentation multivariée. L’analyse d’aortes d’un modèle murin a été le point de départ pour le développement des méthodes car ce sont des échantillons mieux contrôlés. En corrélant les données acquises en mode d’ionisation positive et négative, l’IMS en 3D a permis de démontrer une accumulation des phospholipides dans les sinus aortiques. De plus, l’IMS par AgLDI a mis en évidence une localisation différentielle des acides gras libres, du cholestérol, des esters du cholestérol et des triglycérides. La segmentation multivariée des signaux lipidiques suite à l’analyse par IMS d’une carotide humaine démontre une histologie moléculaire corrélée avec le degré de sténose de l’artère. Ces recherches aident à mieux comprendre la complexité biologique de l’athérosclérose et peuvent possiblement prédire le développement de certains cas cliniques. La métastase au foie du cancer colorectal (Colorectal cancer liver metastasis en anglais, CRCLM) est la maladie métastatique du cancer colorectal primaire, un des cancers le plus fréquent au monde. L’évaluation et le pronostic des tumeurs CRCLM sont effectués avec l’histopathologie avec une marge d’erreur. Nous avons utilisé l’IMS des lipides pour identifier les compartiments histologiques du CRCLM et extraire leurs signatures lipidiques. En exploitant ces signatures moléculaires, nous avons pu déterminer un score histopathologique quantitatif et objectif et qui corrèle avec le pronostic. De plus, par la dissection des signatures lipidiques, nous avons identifié des espèces lipidiques individuelles qui sont discriminants des différentes histologies du CRCLM et qui peuvent potentiellement être utilisées comme des biomarqueurs pour la détermination de la réponse à la thérapie. Plus spécifiquement, nous avons trouvé une série de plasmalogènes et sphingolipides qui permettent de distinguer deux différents types de nécrose (infarct-like necrosis et usual necrosis en anglais, ILN et UN, respectivement). L’ILN est associé avec la réponse aux traitements chimiothérapiques, alors que l’UN est associé au fonctionnement normal de la tumeur.