985 resultados para TOTAL ABOVEGROUND BIOMASS
Resumo:
This paper reports on the design of a new reactor configuration - an upflow fixed-bed combined anaerobic-aerobic reactor - can operate as a single treatment unit for the removal of nitrogen (approximate to 150 mg N/L) and organic matter (approximate to 1300 mg COD/L) from Lysine plant wastewater. L-Lysine, an essential amino acid for animal nutrition, is produced by fermentation from natural raw materials of agricultural origin, thus generating wastewater with high contents of organic matter and nitrogen. The best operational condition of the reactor was obtained with a hydraulic retention time of 35 h (21 h in the anaerobic zone and 14 h in the aerobic zone) and a recycling ratio (R) of 3.5. In this condition, the COD, total Kjeldahl nitrogen (TKN), and total nitrogen (TN) removal efficiencies were 97%, 96%, and 77%, respectively, with average effluent concentrations of 10 +/- 36 mg COD/L, 2 +/- 1 mg NH(4)(+)-N/L, 8 +/- 3 mg Org-N/L, 1 +/- 1 mg NH(2)(-)-N/L, and 26 +/- 23 mg NH(3)(-)-N/L.
Resumo:
The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees-inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO(3)/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees-inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees-inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3) m(3)). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An investigation was performed on the effect of temperature and organic load on the stability and efficiency of a 1.8-L fluidized-bed anaerobic sequencing batch reactor (ASBR), containing granulated biomass. Assays were carried out employing superficial up How velocity of 7 m/h, total cycle length of 6 h and synthetic wastewater volume of 1.3 L per cycle. The fluidized-bed ASH was operated at 15, 20, 25 and 30 degrees C with influent organic matter concentrations of 500 and 1000 mgCOD/L The system showed stability under all conditions and presented filtered samples removal efficiency ranging from 79 to 86%. A first-order kinetic model could be fitted to the experimental values of the organic matter concentration profiles. The specific kinetic parameter values of this model ranged from 0.0435 to 0.2360 L/(gTVS h) at the implemented operation conditions. in addition, from the slope of an Arrhenius plot, the activation energy values were calculated to be 16,729 and 12,673 cal/mol for operation with 500 and 1000 mgCOD/L, respectively. These results show that treatment of synthetic wastewater. with concentration of 500 mgCOD/L, was more sensitive to temperature variations than treatment of the same residue with concentration of 1000 mgCOD/L. Comparing the activation energy value for operation at 500 mgCOD/L with the value obtained by Agibert et al. (S.A. Agibert, M.B. Moreira, S.M. Ratusznei, J.A.D. Rodrigues, M. Zaiat, E. Foresti. Influence of temperature on performance of an ASBBR with circulation applied to treatment of low-strength wastewater. journal of Applied Biochemistry and Biotechnology, 136 (2007) 193-206) in an ASBBR treating the same wastewater at the same concentration, the value obtained in the fluidized-bed ASBR showed to be superior, indicating that treatment of synthetic wastewater in a reactor containing granulated biomass was more sensitive to temperature variations than the treatment using immobilized biomass. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A polyurethane packed-bed-biofilm sequential batch reactor was fed with synthetic substrate simulating the composition of UASB reactor effluents. Two distinct ammonia nitrogen concentrations (125 and 250 mg l(-1)) were supplied during two sequential long-term experiments of 160 days each (320 total). Cycles of 24 h under intermittent aeration for periods of 1 h were applied, and ethanol was added as a carbon source at the beginning of each anoxic period. Nitrite was the main oxidized nitrogen compound which accumulated only during the aerated phases of the batch cycle. A consistent decrease of nitrite concentration started always immediately after the interruption of oxygen supply and addition of the electron donor. Removal to below detection limits of all nitrogen soluble forms was always observed at the end of the 24 h cycles for both initial concentrations. Polyurethane packed-bed matrices and ethanol amendments conferred high process stability. Microbial investigation by cloning suggested that nitrification was carried out by Nitrosomonas-like species whereas denitrification was mediated by unclassified species commonly observed in denitrifying environments. The packed-bed batch bioreactor favored the simultaneous colonization of distinct microbial groups within the immobilized microbial biomass. The biofilm was capable of actively oxidizing ammonium and denitrification at high ratios in intermittent intervals within 24 h cycles. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Two horizontal-flow anaerobic immobilized biomass reactors (HAIB) were used to study the degradation of the LAS surfactant: one filled with charcoal (HAIB1) and the other with a mixed bed of expanded clay and polyurethane foam (HAIB2). The reactors were fed with synthetic substrate supplemented with 14 mg l(-1) of LAS, kept at 30 +/- 2 degrees C and operated with a hydraulic retention time (HRT) of 12 h. The surfactant was quantified by HPLC. Spatial variation analyses were done to quantify organic matter and LAS consumption along the reactor length. The presence of the surfactant in the load did not affect the removal of organic matter (COD), which was close to 90% in both reactors for an influent COD of 550 ring l(-1). The results of a mass balance indicated that 28% of all LAS added to HAIB1 was removed by degradation. HAIB2 presented 27% degradation. Molecular biology techniques revealed microorgan isms belonging the uncultured Holophaga sp., uncultured delta Proteobacterium, uncultured Verrucomicrobium sp., Bacteroides sp. and uncultured gamma Proteobacterium sp. The reactor with biomass immobilized on charcoal presented lower adsorption and a higher kinetic degradation coefficient. So, it was the most suitable support for LAS anaerobic treatment. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this work was to study the operational feasibility of nitrification and denitrification processes in a mechanically stirred sequencing batch reactor (SBR) operated in batch and fed-batch mode. The reactor was equipped with a draft-tube to improve mass transfer and contained dispersed (aerobic) and granulated (anaerobic) biomass. The following reactor variables were adjusted: aeration time during the nitrification step; dissolved oxygen concentration, feed time defining batch and fed-batch phases, concentration of external carbon source used as electron donor during the denitrification stage and volumetric ammonium nitrogen load in the influent. The reactor (5 L volume) was maintained at 30 +/- 1 degrees C and treated either 1.0 or 1.5 L wastewater in 8-h cycles. Ammonium nitrogen concentrations assessed were: 50 (condition 1) and 100 mgN-NH(4)(+).L(-1) (condition 2), resulting in 29 and 67 mgN-NH(4)(+).L-1-d(-1), respectively. A synthetic medium and ethanol were used as external carbon sources (ECS). Total nitrogen removal efficiencies were 94.4 and 95.9% when the reactor was operated under conditions 1 and 2, respectively. Low nitrite (0.2 and 0.3 mgN-NO(2)(-).L(-1), respectively) and nitrate (0.01 and 0.3 mgN-NO(3)(-).L(-1), respectively) concentrations were detected in the effluent and ammonium nitrogen removal efficiencies were 97.6% and 99.6% under conditions 1 and 2, respectively.
Resumo:
The anaerobic biological treatment of pentachlorophenol (PCP) and methanol as the main carbon source was investigated in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor at 30 +/- 1 degrees C, during a 220-day trial period. The reactor biomass was developed as an attached biofilm on polyurethane foam particles, with 24 h of hydraulic retention time. The PCP concentrations, which ranged from 2.0 to 13.0 mg/L, were controlled by adding synthetic substrate. The HAIB reactor reduced 97% of COD and removed 99% of PCP. The microbial biofilm communities of the HAIB reactor amended with PCP, without previous acclimatization, were characterized by polymerase chain reaction (PCR) and amplified ribosomal DNA restriction analysis (ARDRA) with specific Archaea oligonucleotide primers. The ARDRA technique provided an adequate analysis of the community, revealing the profile of the selected population along the reactor. The biomass activities in the HAIB reactor at the end of the experiments indicated the development of PCP degraders and the maintenance of the population of methanogenic Archaea, ensuring the high efficiency of the system treating PCP with added methanol as the cosubstrate. The use of the simplified ARDRA method enabled us to monitor the microbial population with the addition of high concentrations of toxic compounds and highlighting a selection of microorganisms in the biofilm. (C) 2008 Published by Elsevier Ltd.
Resumo:
The objective of this study was to determine the best performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) based on the use of four different bed materials as support for biomass immobilization. The bed materials utilized were Polyurethane foam (PU), vegetal carbon (VC), synthetic pumice (SP), and recycled low-density polyethylene (PE). The AnSBBR. with I total volume Of 7.2 L, was operated in 8-h batch cycles over 10 months, and fed with domestic sewage with an average influent chemical oxygen demand (COD) of 358 +/- 110 mg/L. The average effluent COD values were 121 +/- 31, 208 +/- 54, 233 +/- 52, and 227 +/- 51 mg/L. for PU, VC, SP, and PE, respectively. A modified first-order kinetic model was adjusted to temporal profiles of COD during a batch cycle, and the apparent kinetic constants were 0.52 +/- 0.05, 0.37 +/- 0.05, 0.80 +/- 0.04, and 0.30 +/- 0.021h(-1) for PU, VC, SP, and PE, respectively. Specific substrate utilization rates of 1.08, 0.11, and 0.86 mg COD/mg VS day were obtained for PU, VC, and PE, respectively. Although SP yielded the highest kinetic coefficient, PU was considered the best support, since SP presented loss of chemical constituents during the reactor`s operational phase. In addition, findings oil the microbial community were associated with the reactor`s performance data. Although PE did not show a satisfactory performance, an interesting microbial diversity was found oil its surface. Based oil the morphology and denaturing gradient gel electrophoresis (DGGE) results, PE showed the best capacity for promoting the attachment of methanogenic organisms, and is therefore a material that merits further analysis. PU was considered the Most suitable material showing the best performance in terms of efficiency of solids and COD removal. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a technological viability study of wastewater treatment in an automobile industry by an anaerobic sequencing batch biofilm reactor containing immobilized biomass (AnSBBR) with a draft tube. The reactor was operated in 8-h cycles, with agitation of 400 rpm, at 30 degrees C and treating 2.0 L wastewater per cycle. Initially the efficiency and stability of the reactor were studied when supplied with nutrients and alkalinity. Removal efficiency of 88% was obtained at volumetric loading rate (VLR) of 3.09 mg COD/L day. When VLR was increased to 6.19 mg COD/L day the system presented stable operation with reduction in efficiency of 71%. In a second stage the AnSBBR was operated treating wastewater in natura, i.e., without nutrients supplementation, only with alkalinity, thereby changing feed strategy. The first strategy consisted in feeding 2.0 L batch wise (10 min), the second in feeding 1.0 L of influent batch wise (10 min) and an additional 1.0 L fed-batch wise (4 h), both dewatering 2.0 L of the effluent in 10 min. The third one maintained 1.0 L of treated effluent in the reactor, without discharging, and 1.0 L of influent was fed fed-batch wise (4 h) with dewatering 1.0 L of the effluent in 10 min. For all implemented strategies (VLR of 1.40, 2.57 and 2.61 mg COD/L day) the system presented stability and removal efficiency of approximately 80%. These results show that the AnSBBR presents operational flexibility, as the influent can be fed according to industry availability. In industrial processes this is a considerable advantage, as the influent may be prone to variations. Moreover, for all the investigated conditions the kinetic parameters were obtained from fitting a first-order model to the profiles of organic matter, total volatile acids and methane concentrations. Analysis of the kinetic parameters showed that the best strategy is feeding 1.0 L of influent batchwise (10 min) and 1.0 L fed-batch wise (4 h) in 8-h cycle. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A modeling study was completed to develop a methodology that combines the sequencing and finite difference methods for the simulation of a heterogeneous model of a tubular reactor applied in the treatment of wastewater. The system included a liquid phase (convection diffusion transport) and a solid phase (diffusion reaction) that was obtained by completing a mass balance in the reactor and in the particle, respectively. The model was solved using a pilot-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor to treat domestic sewage, with the concentration results compared with the experimental data. A comparison of the behavior of the liquid phase concentration profile and the experimental results indicated that both the numerical methods offer a good description of the behavior of the concentration along the reactor. The advantage of the sequencing method over the finite difference method is that it is easier to apply and requires less computational time to model the dynamic simulation of outlet response of HAIB.
Resumo:
Fluid dynamic analysis is an important branch of several chemical engineering related areas, such as drying processes and chemical reactors. However, aspects concerning fluid dynamics in wastewater treatment bioreactors still require further investigation, as they highly influence process efficiency. Therefore, it is essential to evaluate the influence of biofilm on the reactor fluid dynamic behavior, through the analysis of a few important parameters, such as minimum fluidization velocity, bed expansion and porosity, and particle terminal velocity. The main objective of the present work was to investigate the fluid dynamics of an anaerobic fluidized bed reactor, having activated carbon particles as support media for biomass immobilization. Reactor performance was tested using synthetic residual water, which was prepared using the solution employed in BOD determination. The results showed that the presence of immobilized biomass increased particle density and altered the main fluid dynamic parameters investigated.
Resumo:
This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated two different support materials (polystyrene and expanded clay) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBRs contained either polystyrene (R1) or expanded clay (R2) as support materials were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C and a pH of approximately 5.5. The AFBRs were operated with a range of hydraulic retention times (HRTs) between 1 and 8 h. For R1 with an HRT of 2 h, the maximum hydrogen yield (HY) was 1.90 mol H(2) mol(-1) glucose, with 0.805 mg of biomass (as total volatile solids, or TVS) attached to each g of polystyrene. For R2 operated at an HRT of 2 h, the maximum HY was 2.59 mol H(2) moll glucose, with 1.100 mg of attached biomass (as TVS) g(-1) expanded clay. The highest hydrogen production rates (HPR) were 0.95 and 1.21 L h(-1) L(-1) for R1 and R2, respectively, using an HRT of 1 h. The H(2) content increased from 16-47% for R1 and from 22-51% for R2. No methane was detected in the biogas produced throughout the period of AFBR operation. These results show that the values of HY, HPR, H(2) content, and g of attached biomass g(-1) support material were all higher for AFBRs containing expanded clay than for reactors containing polystyrene. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Resumo:
Rotifera density, biomass, and secondary production on two marginal lakes of Paranapanema River were compared after the recovery of hydrologic connectivity with the river (Sao Paulo State, Brazil). Daily samplings were performed in limnetic zone of both lakes during the rainy season immediately after lateral inflow of water and, in the dry period, six months after hydrologic connectivity recovery. In order to identify the factors that affect rotifer population dynamics, lake water level, volume, depth, temperature, transparency, dissolved oxygen, pH, alkalinity, conductivity, suspended solids, nutrients, and chlorophyll-a were determined. Variations of water physical and chemical factors that affect rotifer population were related to the lake-river degree of connection and to water level rising after drought. The water lateral inflow from the river resulted in an increase in lake water volume, depth, and transparency and a decrease in water pH, alkalinity, and suspended solids. The lake with the wider river connection, more frequent biota exchange, and larger amount of particulate and dissolved materials was richer and more diverse, while rotifer density, biomass, and productivity were lower in both periods studied. Density, biomass, and secondary production were higher in the lake with the smaller river connection and the higher physical and chemical stability. Our results show that the connectivity affects the limnological stability, associated to seasonality. Stable conditions, caused by low connectivity in dry periods, were related with high density, biomass and secondary production. Conversely, instability conditions in rainy periods were associated to elevated richness and diversity values, caused by exchange biota due to higher connectivity. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
This study evaluated hydrogen production in an anaerobic fluidized bed reactor (AFBR) fed with glucose-based synthetic wastewater. Particles of expanded clay (2.8-3.35 mm) were used as a support material for biomass immobilization. The reactor was operated with hydraulic retention times (HRT) ranging from 8 to 1 h. The hydrogen yield production increased from 1.41 to 2.49 mol H(2) Mol(-1) glucose as HRT decreased from 8 to 2 h. However, when HRT was 1 h, there was a slight decrease to 2.41 mol H(2) Mol(-1) glucose. The biogas produced was composed of H(2) and CO(2), and the H(2) content increased from 8% to 35% as HRT decreased. The major soluble metabolites during H(2) fermentation were acetic acid (HAc) and butyric acid (HBu), accounting for 36.1-53.3% and 37.7-44.9% of total soluble metabolites, respectively. Overall, the results demonstrate the potential of using expanded clay as support material for hydrogen production in AFBRs. (c) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.