965 resultados para TONIC CONTRACTION
Resumo:
Lead (Pb2+) poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g) before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 µM) to the bath. Changes in rate of stimulation (0.1-1.5 Hz), relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM), and the effect of isoproterenol (20 ng/mL) were determined before and after the addition of 100 µM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz) and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 µM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 µM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 µM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 µM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.
Resumo:
The objective of the present study was to assess the effect of transcutaneous electrical diaphragmatic stimulation (TEDS) on different types of diaphragm muscle fibers. Male Wistar rats (8-12 weeks old) were divided into 2 experimental groups (N = 8 in each group): 1) control, 2) animals submitted to TEDS [frequency = 50 Hz; T ON/T OFF (contraction/relaxation time) = 2/2 s; pulse duration = 0.4 ms, intensity = 5 mA with a 1 mA increase every 3 min for 20 min] for 7 days. After completing this treatment period, the I, IIA, IIB, and IID diaphragm muscle fibers were identified using the mATPase technique. Statistical analysis consisted of the normality, homoscedasticity and t-tests (P < 0.05). There was a 19.6% (P < 0.05) reduction in the number of type I fibers and a 49.7% increase (P < 0.05) in type IID fibers in the TEDS group compared with the control group. An important result of the present study was that electrical stimulation with surface electrodes was efficient in altering the distribution of fibers in diaphragm muscle. This therapeutic resource could be used in the treatment of respiratory muscle alterations.
Resumo:
Atrial fibrillation (AF) affects subjects with Chagas' disease and is an indicator of poor prognosis. We investigated clinical, echocardiographic and electrocardiographic variables of Chagas' disease in a long-term longitudinal study as predictors of a new-onset AF episode lasting >24 h, nonfatal embolic stroke and cardiac death. Fifty adult outpatients (34 to 74 years old, 62% females) staged according to the Los Andes classification were enrolled. During a follow-up of (mean ± SD) 84.2 ± 39.0 months, 9 subjects developed AF (incidence: 3.3 ± 1.0%/year), 5 had nonfatal stroke (incidence: 1.3 ± 1.0%/year), and nine died (mortality rate: 2.3 ± 0.8%/year). The progression rate of left ventricular mass and left ventricular ejection fraction was significantly greater in subjects who experienced AF (16.4 ± 20.0 g/year and -8.6 ± 7.6%/year, respectively) than in those who did not (8.2 ± 8.4 g/year; P = 0.03, and -3.0 ± 2.5%/year; P = 0.04, respectively). In univariate analysis, left atrial diameter ≥3.2 cm (P = 0.002), pulmonary arterial hypertension (P = 0.035), frequent premature supraventricular and ventricular contraction counts/24 h (P = 0.005 and P = 0.007, respectively), ventricular couplets/24 h (P = 0.002), and ventricular tachycardia (P = 0.004) were long-term predictors of AF. P-wave signal-averaged ECG revealed a limited long-term predictive value for AF. In chronic Chagas' disease, large left atrial diameter, pulmonary arterial hypertension, frequent supraventricular and ventricular premature beats, and ventricular tachycardia are long-term predictors of AF. The rate of left ventricular mass enlargement and systolic function deterioration impact AF incidence in this population.
Resumo:
Skeletal muscle force production following repetitive contractions is preferentially reduced when muscle is evaluated with low-frequency stimulation. This selective impairment in force generation is called low-frequency fatigue (LFF) and could be dependent on the contraction type. The purpose of this study was to compare LFF after concentric and eccentric maximal and submaximal contractions of knee extensor muscles. Ten healthy male subjects (age: 23.6 ± 4.2 years; weight: 73.8 ± 7.7 kg; height: 1.79 ± 0.05 m) executed maximal voluntary contractions that were measured before a fatigue test (pre-exercise), immediately after (after-exercise) and after 1 h of recovery (after-recovery). The fatigue test consisted of 60 maximal (100%) or submaximal (40%) dynamic concentric or eccentric knee extensions at an angular velocity of 60°/s. The isometric torque produced by low- (20 Hz) and high- (100 Hz) frequency stimulation was also measured at these times and the 20:100 Hz ratio was calculated to assess LFF. One-way ANOVA for repeated measures followed by the Newman-Keuls post hoc test was used to determine significant (P < 0.05) differences. LFF was evident after-recovery in all trials except following submaximal eccentric contractions. LFF was not evident after-exercise, regardless of exercise intensity or contraction type. Our results suggest that low-frequency fatigue was evident after submaximal concentric but not submaximal eccentric contractions and was more pronounced after 1-h of recovery.
Resumo:
We compared the effect of the number of weekly repetitions of a static stretching program on the flexibility, hamstring tightness and electromyographic activity of the hamstring and of the triceps surae muscles. Thirty-one healthy subjects with hamstring tightness, defined as the inability to perform total knee extension, and shortened triceps surae, defined by a tibiotarsal angle wider than 90° during trunk flexion, were divided into three groups: G1 performed the stretching exercises once a week; G2, three times a week, and G3, five times a week. The parameters were determined before and after the stretching program. Flexibility improved in all groups after intervention, from 7.65 ± 10.38 to 3.67 ± 12.08 in G1, from 10.73 ± 12.07 to 0.77 ± 10.45 in G2, and from 14.20 ± 10.75 to 6.85 ± 12.19 cm in G3 (P < 0.05 for all comparisons). The increase in flexibility was higher in G2 than in G1 (P = 0.018), while G2 and G3 showed no significant difference (G1: 4 ± 2.17, G2: 10 ± 5.27; G3: 7.5 ± 4.77 cm). Hamstring tightness improved in all groups, from 37.90 ± 6.44 to 29 ± 11.65 in G1, from 39.82 ± 9.63 to 21.91 ± 8.40 in G2, and from 37.20 ± 6.63 to 26.10 ± 5.72° in G3 (P < 0.05 for all comparisons). During stretching, a statistically significant difference was observed in electromyographic activity of biceps femoris muscle between G1 and G3 (P = 0.048) and G2 and G3 (P = 0.0009). No significant differences were found in electromyographic activity during maximal isometric contraction. Stretching exercises performed three times a week were sufficient to improve flexibility and range of motion compared to subjects exercising once a week, with results similar to those of subjects who exercised five times a week.
Resumo:
Oscillatory contractile activity is an inherent property of blood vessels. Various cellular mechanisms have been proposed to contribute to oscillatory activity. Mouse small mesenteric arteries display a unique low frequency contractile oscillatory activity (1 cycle every 10-12 min) upon phenylephrine stimulation. Our objective was to identify mechanisms involved in this peculiar oscillatory activity. First-order mesenteric arteries were mounted in tissue baths for isometric force measurement. The oscillatory activity was observed only in vessels with endothelium, but it was not blocked by L-NAME (100 µM) or indomethacin (10 µM), ruling out the participation of nitric oxide and prostacyclin, respectively, in this phenomenon. Oscillatory activity was not observed in vessels contracted with K+ (90 mM) or after stimulation with phenylephrine plus 10 mM K+. Ouabain (1 to 10 µM, an Na+/K+-ATPase inhibitor), but not K+ channel antagonists [tetraethylammonium (100 µM, a nonselective K+ channel blocker), Tram-34 (10 µM, blocker of intermediate conductance K+ channels) or UCL-1684 (0.1 µM, a small conductance K+ channel blocker)], inhibited the oscillatory activity. The contractile activity was also abolished when experiments were performed at 20°C or in K+-free medium. Taken together, these results demonstrate that Na+/K+-ATPase is a potential source of these oscillations. The presence of α-1 and α-2 Na+/K+-ATPase isoforms was confirmed in murine mesenteric arteries by Western blot. Chronic infusion of mice with ouabain did not abolish oscillatory contraction, but up-regulated vascular Na+/K+-ATPase expression and increased blood pressure. Together, these observations suggest that the Na+/K+ pump plays a major role in the oscillatory activity of murine small mesenteric arteries.
Resumo:
Physical training influences the cells and mediators involved in skin wound healing. The objective of this study was to determine the changes induced by different intensities of physical training in mouse skin wound healing. Ninety male C57BL6 mice (8 weeks old, 20-25 g) were randomized into three physical training groups: moderate (70% VO2max), high (80% VO2max), and strenuous intensity (90% VO2max). Animals trained on a motorized treadmill for 8 weeks (Elesion: physical training until the day of excisional lesion, N = 10) or 10 weeks (Eeuthan: physical training for 2 additional weeks after excisional lesion until euthanasia, N = 10), five times/week, for 45 min. Control groups (CG) trained on the treadmill three times/week only for 5 min (N = 10). In the 8th week, mice were anesthetized, submitted to a dorsal full-thickness excisional wound of 1 cm², and sacrificed 14 days after wounding. Wound areas were measured 4, 7, and 14 days after wounding to evaluate contraction (d4, d7 and d14) and re-epithelialization (d14). Fragments of lesion and adjacent skin were processed and submitted to routine histological staining. Immunohistochemistry against alpha-smooth muscle actin (α-SMA) was performed. Moderate-intensity training (M) until lesion (M/Elesion) led to better wound closure 7 days after wounding compared to controls and M/Eeuthan (P < 0.05), and both moderate-intensity groups showed better re-epithelialization rates than controls (M/Elesion = 85.9%, M/Eeuthan = 96.4% and M/CG = 79.9%; P < 0.05). Sections of M/Elesion and M/Eeuthan groups stained with hematoxylin-eosin, Picrosirius red and α-SMA showed the most mature granulation tissues among all trained groups and controls. Thus, moderate-intensity physical training improves skin wound healing.
Resumo:
Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT4 receptor and the serotonin transporter (SERT) as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times) between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT4 receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05) and increased 5-HT4 receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05). Treatment with fluoxetine (10 mg·kg-1·day-1, days 36-42), tegaserod (1 mg·kg-1·day-1, day 43), or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT4 receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01) but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654). These results indicate that both the 5-HT4 receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level.
Resumo:
In numerous motor tasks, muscles around a joint act coactively to generate opposite torques. A variety of indexes based on electromyography signals have been presented in the literature to quantify muscle coactivation. However, it is not known how to estimate it reliably using such indexes. The goal of this study was to test the reliability of the estimation of muscle coactivation using electromyography. Isometric coactivation was obtained at various muscle activation levels. For this task, any coactivation measurement/index should present the maximal score (100% of coactivation). Two coactivation indexes were applied. In the first, the antagonistic muscle activity (the lower electromyographic signal between two muscles that generate opposite joint torques) is divided by the mean between the agonistic and antagonistic muscle activations. In the second, the ratio between antagonistic and agonistic muscle activation is calculated. Moreover, we computed these indexes considering different electromyographic amplitude normalization procedures. It was found that the first algorithm, with all signals normalized by their respective maximal voluntary coactivation, generates the index closest to the true value (100%), reaching 92 ± 6%. In contrast, the coactivation index value was 82 ± 12% when the second algorithm was applied and the electromyographic signal was not normalized (P < 0.04). The new finding of the present study is that muscle coactivation is more reliably estimated if the EMG signals are normalized by their respective maximal voluntary contraction obtained during maximal coactivation prior to dividing the antagonistic muscle activity by the mean between the agonistic and antagonistic muscle activations.
Resumo:
The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function.
Resumo:
Ca2+ pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca2+-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca2+-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca2+ (Ca0.5 = 780 nM) and a low sensitivity to vanadate (IC50 = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca2+/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca2+ and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca2+ accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca2+ and CaM, possibly via CaMKII, in a process that results in stimulation of Ca2+ pumping activity.
Resumo:
In cardiac and skeletal muscle, eugenol (μM range) blocks excitation-contraction coupling. In skeletal muscle, however, larger doses of eugenol (mM range) induce calcium release from the sarcoplasmic reticulum. The effects of eugenol are therefore dependent on its concentration. In this study, we evaluated the effects of eugenol on the contractility of isolated, quiescent atrial trabeculae from male Wistar rats (250-300 g; n=131) and measured atrial ATP content. Eugenol (1, 3, 5, 7, and 10 mM) increased resting tension in a dose-dependent manner. Ryanodine [100 µM; a specific ryanodine receptor (RyR) blocker] and procaine (30 mM; a nonspecific RyR blocker) did not block the increased resting tension induced by eugenol regardless of whether extracellular calcium was present. The myosin-specific inhibitor 2,3-butanedione monoxime (BDM), however, reversed the increase in resting tension induced by eugenol. In Triton-skinned atrial trabeculae, in which all membranes were solubilized, eugenol did not change resting tension, maximum force produced, or the force vs pCa relationship (pCa=-log [Ca2+]). Given that eugenol reduced ATP concentration, the increase in resting tension observed in this study may have resulted from cooperative activation of cardiac thin filaments by strongly attached cross-bridges (rigor state).
Resumo:
Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres.
Resumo:
O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca2+/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.
Resumo:
Resistance training evokes myocardial adaptation; however, the effects of a single resistance exercise session on cardiac performance are poorly understood or investigated. This study aimed to investigate the effects of a single resistance exercise session on the myocardial contractility of spontaneously hypertensive rats (SHRs). Male 3-month-old SHRs were divided into two groups: control (Ct) and exercise (Ex). Control animals were submitted to sham exercise. Blood pressure was measured in conscious rats before the exercise session to confirm the presence of arterial hypertension. Ten minutes after the exercise session, the animals were anesthetized and killed, and the hearts were removed. Cardiac contractility was evaluated in the whole heart by the Langendorff technique and by isometric contractions of isolated left ventricular papillary muscles. SERCA2a, phospholamban (PLB), and phosphorylated PLB expression were investigated by Western blot. Exercise increased force development of isolated papillary muscles (Ex=1.0±0.1 g/mg vs Ct=0.63±0.2 g/mg, P<0.05). Post-rest contraction was greater in the exercised animals (Ex=4.1±0.4% vs Ct=1.7±0.2%, P<0.05). Papillary muscles of exercised animals developed greater force under increasing isoproterenol concentrations (P<0.05). In the isolated heart, exercise increased left ventricular isovolumetric systolic pressure (LVISP; Δ +39 mmHg; P<0.05) from baseline conditions. Hearts from the exercised rats presented a greater response to increasing diastolic pressure. Positive inotropic intervention to calcium and isoproterenol resulted in greater LVISP in exercised animals (P<0.05). The results demonstrated that a single resistance exercise session improved myocardial contractility in SHRs.